

Network Performance
Degeneration in
Dynamic Traffic
Assignment

With Applications to Evacuation Modelling

Wouter J. Schakel

August 2009

 Ministerie van Verkeer en Waterstaat opq

Network Performance

Degeneration in

Dynamic Traffic

Assignment

With Applications to Evacuation Modelling

Wouter J. Schakel

August 2009

MSc Thesis Transport & Planning

Delft University of Technology

 i Network Performance Degeneration in Dynamic Traffic Management

.

Colophon

Published by: ITS Edulab, Delft

ITS Edulab is a cooperation between the Rijkswaterstaat centre for

Transport and Navigation and the Delft University of Technology

Information: Henk Taale

Email: Henk.Taale@rws.nl

Author: Wouter J. Schakel

 Delft University of Technology

 Master Transport & Planning

Graduation

committee:

Prof. Dr. Ir. Serge P. Hoogendoorn

Committee chairman

Delft University of Technology

Faculty of Civil Engineering and Geosciences

 Ir. Olga Huibregtse

Delft University of Technology

Faculty of Civil Engineering and Geosciences

 Prof. Dr. Ir. John Stoop

Delft University of Technology

Faculty of Aerospace Engineering

 Ir. Marco Schreuder

Rijkswaterstaat, Centre for Transport and Navigation

 Ir. Ydo de Vries

Rijkswaterstaat, Centre for Transport and Navigation

Date: August 2009

Status: Final report

 ii Network Performance Degeneration in Dynamic Traffic Management

 Summary

.

EVAQ is a traffic model for ex-ante evaluations of evacuations plans.

The model is still in development and it is uncertain whether EVAQ will

accurately model network performance degeneration. At the same time

it can be said that accurate network performance degeneration is very

important for evacuations. The research of this thesis identifies that

there are phenomena that contribute to network performance

degeneration that are not modelled. Two important phenomena that

are not included are the flow degeneration as soon as links become

congested and the constraints that nodes (intersections) themselves

have. Several general ideas were thought up to implement these

phenomena. A selection was made on the basis of accuracy.

Flow degeneration as soon as a link becomes congested has to do with

the link model. The link model determines what number of vehicles can

potentially enter and leave the link within a time step. In order to

accurately determine these, the framework of Cell Based Queuing is

developed. It represents the queue on a link as a set of cells that are

related to successive time steps in the past. The theory of kinematic

waves is applied which explains that in congestion the traffic states

move upstream. Traffic states in the cells can thus be determined using

the link outflow from the past. Link inflow is determined by the

remaining storage capacity on the link. As an addition to the theory of

kinetic waves, the cell at the end of the link is governed by saturation

flow rather than kinematic waves. This implicitly applies a capacity

drop.

A newly developed node model evaluates constraints on the nodes. The

new node model is a combination of these constraints and the

constraints by link inflow that are already evaluated. The node model

exists out of several sub models that are used for different node types.

The controlled intersection model deals with combined use of conflict

areas and the effect of green phases. The uncontrolled intersection

model is based on a capacity formula that determines the capacity for a

minor flow based on a major flow. The formula is used in a framework

that relates all flows on the intersection. For roundabouts an existing

model by Cetur (1986) is used. A similar framework is put in place to

relate all flows over the roundabout. The model is adapted to work on

lane level rather than link level for turbo roundabouts. For weaving

sections, on-ramps and off-ramps a new model is developed that looks

at lane specific demand.

The new model needs more calculation time but produces more precise

capacity estimations. Significant changes are found for the MFD and for

queue lengths (spillback). The latter now resembles results from the

 iii Network Performance Degeneration in Dynamic Traffic Management

microscopic model VISSIM quite closely and needs both the new link

and node model.

The new node and link model are part of the Dynamic Network

Loading model of EVAQ. This model has been the centre of most

changes performed for EVAQ and can be used in any other Dynamic

Traffic Assignment model. Furthermore, the model is theory based and

can thus be used for reversed engineering and more extensive analysis

of bottlenecks, also for evacuation schemes.

 iv Network Performance Degeneration in Dynamic Traffic Management

Nederlandse samenvatting

.

EVAQ is een verkeersmodel voor ex-ante evaluaties van evacuatie

plannen. Het model is nog onder ontwikkeling en het is onbekend of

EVAQ nauwkeurig Netwerk Prestatie Degeneratie kan modelleren.

Tegelijkertijd kan gezegd worden dat nauwkeurige Netwerk Prestatie

Degeneratie erg belangrijk is voor evacuaties. Het onderzoek van deze

thesis wijst uit dat er fenomenen zijn die bijdrage aan Netwerk Prestatie

Degeneratie die niet gemodelleerd worden. Twee belangrijke

fenomenen welke ontbreken zijn de degeneratie van doorstroming bij

congestie en de randvoorwaarde welke knopen (kruispunten) zelf

hebben. Een aantal ideeën is bedacht om de fenomenen te

implementeren. Een selectie is gemaakt op bases van nauwkeurigheid.

Degeneratie van doorstroming zodra een link congestie krijgt heeft

betrekking op het linkmodel. Het linkmodel bepaalt het aantal

voertuigen dat potentieel the link in en uit kan binnen een tijdstap. Om

deze aantallen nauwkeurig te bepalen is het raamwerk van CBQ (file

gebaseerd op cellen) ontwikkeld. Het representeert the file op een link

als een aantal cellen gerelateerd aan opeenvolgende tijdstappen in het

verleden. De theorie van kinematische golven, welke verklaart dat

verkeersstaten stroomopwaarts verplaatsen, is toegepast.

Verkeersstaten in de cellen kunnen dus worden herleid met de link

uitstroom uit het verleden. Link instroom wordt bepaald door de

overgebleven opbergcapaciteit van de link. Naast de theorie van

kinematische golven is de cel aan het einde van de link onderhevig aan

saturatie doorstroming. Dit past impliciet een capaciteitsverval toe.

Een nieuw ontwikkeld knoopmodel evalueert randvoorwaarden op de

knopen. Het nieuwe knoopmodel is een combinatie van deze

randvoorwaarden en de randvoorwaarden van link instroom welke al

worden geëvalueerd. Het knoopmodel bestaat uit meerdere

submodellen welke voor verschillende knooptypes worden gebruikt.

Het model voor kruispunten met verkeerslichten beschouwt het

gecombineerde gebruik van conflictgebieden en het effect van

groenfasen. Het model voor niet gecontroleerde kruispunten is

gebaseerd op een capaciteitsformule welke de capaciteit van een

ondergeschikte stroom bepaald aan de hand van een voorrangsstroom.

De formule wordt gebruikt in een raamwerk waarin alle stromingen op

een kruispunt gerelateerd worden. Voor rotondes wordt een bestaand

model van Cetur (1986) gebruikt. Een soortgelijk raamwerk wordt

gebruikt om alle stromingen over de rotonde te relateren. Het model is

aangepast om op rijstrookniveau in plaats van linkniveau te werken

voor turbo rotondes. Een nieuw model is ontwikkeld voor weefvakken,

opritten en afritten welke naar rijstrook specifieke verkeersvraag kijkt.

 v Network Performance Degeneration in Dynamic Traffic Management

Het nieuwe model vergt meer calculatietijd maar produceert ook

preciezere capaciteitsinschattingen. Significante veranderingen zijn te

vinden voor het macroscopisch fundamentele diagram en voor

filelengtes. De overeenkomst van filelengte met de filelengte van het

microscopische model VISSIM is nu veel groter en heeft zowel het

nieuwe link en knoopmodel nodig.

Het nieuwe link- en knoopmodel zijn onderdeel van het DNL

(dynamische netwerkbelading) model van EVAQ. De meeste

veranderingen hebben plaatsgevonden in dit model welke gebruikt kan

worden in elk ander DTA (dynamische verkeerstoedeling) model.

Daarnaast is het model gebaseerd op theorie en kan het zodoende

gebruikt worden voor ‘reversed engineering’ en het extensiever

analyseren van flessenhalzen, ook voor evacuatieschema’s.

 vi Network Performance Degeneration in Dynamic Traffic Management

 Preface

.

This master thesis marks the end of my study at the Department of

Transport & Planning of the Delft University of Technology. The

research was performed at the ITS Edulab which is a cooperation

between the Department of Transport & Planning and Rijkswaterstaat -

Centre for Transport and Navigation. It offers great opportunities for

students to work on real-life problems during their master thesis. I am

very grateful for the opportunity to perform my master thesis at the ITS

Edulab.

My gratitude goes to the committee members from Rijkswaterstaat,

Marco Schreuder and Ydo de Vries, for their time and effort to read my

report and give constructive criticism. Additionally I would like to thank

Henk Taale, as he has also been involved in the project. I would also

like to thank the committee members from the Department of

Transport & Planning, Olga Huibregtse and Serge Hoogendoorn. They

have shown great enthusiasm for the technical details of the models,

which has certainly increased my own enthusiasm. Also my gratitude

towards John Stoop from the Faculty of Aerospace Engineering at the

Delft University of Technology for the focus on safety related issues.

I would also like to thank my fellow students and colleagues at

Rijkswaterstaat for providing distraction with table soccer. Special

thanks go to Xiaoyu Qian for sharing ideas about MFD’s.

During my study I have had much support from both my parents, Piet

and Beppie Schakel, and my fiancée Priscilla den Dekker. I thank you

greatly for the emotional and financial support.

Wouter Schakel

Delft

August 28th, 2009

 vii Network Performance Degeneration in Dynamic Traffic Management

List of common symbols

.

General

Q cumulative quantity (Q is a dummy)

t time step number

t∆ time step size

τ number of time steps related to a travelling distance

Link model

C link capacity

X number of vehicles

L link (part) length

U link inflow
max

U maximum link inflow

Q queue inflow

V link outflow
pot

V potential link outflow
maxϑ maximum (free flow) speed

f
 related to free flow part

q
 related to queue part

a related to link a

Cell Based Queuing

()gV link outflow related to cell g

()gK density inside cell g

()gW speed inside cell g

()gL length of cell g

()gT travel time through cell g

()gS storage capacity of cell g
pot

V ' link outflow respecting queued cell states
qT queue travel time

qX ' queued vehicles that can reach the link head within ∆t
fX ' free flow and queued vehicles that can reach the link

 head within ∆t

 viii Network Performance Degeneration in Dynamic Traffic Management

List of common abbreviations

.

CBQ Cell Based Queuing

DNL Dynamic Network Loading

DTA Dynamic Traffic Assignment

EVAQ Evacuation of Vehicles using Assignment with Queuing

LCM Lane Choice Model

MFD Macroscopic Fundamental Diagram

NPD Network Performance Degeneration

 ix Network Performance Degeneration in Dynamic Traffic Management

 Table of contents

.

SUMMARY..II

NEDERLANDSE SAMENVATTING ... IV

PREFACE.. VI

LIST OF COMMON SYMBOLS ...VII

LIST OF COMMON ABBREVIATIONS .. VIII

TABLE OF CONTENTS ... IX

1. INTRODUCTION ...1

1.1 DTA, EVACUATION MODELLING AND NETWORK PERFORMANCE1
1.2 PROBLEM DEFINITION ...2
1.3 RESEARCH OBJECTIVE AND QUESTIONS ..2
1.4 RESEARCH APPROACH ...3
1.5 RESEARCH SCOPE..4
1.6 RESEARCH RELEVANCE ...5
1.7 READING GUIDE ..5

2. EVAQ...8

2.1 AN OVERVIEW OF EVAQ...8
2.2 EVAQ MODULES EXPLAINED ..9
2.3 CONCLUSIONS ..10

3. NETWORK PERFORMANCE DEGENERATION11

3.1 NETWORK PERFORMANCE..11
3.2 EVAQ TEST RUNS WITH AN MFD AS OUTPUT.................................14
3.3 OBSERVATIONS FROM THE TEST RUNS ..15
3.4 OBSERVATIONS FROM THE DYNAMIC NETWORK LOADING19
3.5 CONCLUSIONS ..21

4. SOLUTION DIRECTIONS...23

4.1 AVERAGE CONGESTION STATE ...23
4.2 DIRECT IMPLEMENTATION OF A FUNDAMENTAL DIAGRAM24
4.3 CELL BASED QUEUING ..25
4.4 CONGESTION OUTFLOW LIMITS ..26
4.5 CONSTRAINTS IN THE NODE MODEL..27
4.6 SELECTION OF SOLUTIONS ...27
4.7 NEW DYNAMIC NETWORK LOADING MODELLING FRAMEWORK28
4.8 CONCLUSIONS ..29

5. LINK MODEL IMPROVEMENTS ..30

5.1 CELL BASED QUEUING ..30
5.2 CONCLUSIONS ..39

 x Network Performance Degeneration in Dynamic Traffic Management

6. NODE MODEL IMPROVEMENTS ...41

6.1 NEW NODE MODEL FRAMEWORK ..41
6.2 LANE CHOICE MODEL ...43
6.3 CONTROLLED INTERSECTION MODEL..47
6.4 UNCONTROLLED AND PRIORITY INTERSECTION MODEL52
6.5 ROUNDABOUT MODEL ...55
6.6 CONCLUSIONS ..58

7. WEAVING MODEL..59

7.1 EXISTING WEAVING MODELS ...59
7.2 NEW WEAVING MODEL ..60
7.3 CALIBRATION OF THE WEAVING MODEL ...65
7.4 CONCLUSIONS ..72

8. EVALUATION ..73

8.1 LINK MODEL EVALUATION...73
8.2 NODE MODEL EVALUATION ...78
8.3 NEW VERSUS OLD EVAQ OUTCOME ..83
8.4 NEW VERSUS OLD EVAQ PERFORMANCE87
8.5 APPLICABILITY OF THE NEW EVAQ MODEL88
8.6 CONCLUSIONS ..90

9. CONCLUSIONS & RECOMMENDATIONS...................................91

9.1 CONCLUSIONS ..91
9.2 RECOMMENDATIONS ...93

10. BIBLIOGRAPHY ..97

APPENDIX A: EVAQ ALGORITHM OVERVIEW100

APPENDIX B: NODE INPUT GENERATOR107

APPENDIX C: VISSIM COMPARISON ...114

APPENDIX D: MATLAB CODE ...120

 1 Network Performance Degeneration in Dynamic Traffic Management

1. Introduction

.

1.1 DTA, evacuation modelling and network performance

1.1.1. Dynamic Traffic Assignment

Dynamic Traffic Assignment (DTA) models are a class of models that

can be used to model dynamic traffic processes. The term dynamic

means that the state of model elements may change over time. For

instance queues may change in length, route choice may change,

pricing can be time dependant etc. DTA models use small time

increments. For each time increment a new model state is calculated

based on previous model state(s). Model components that are often

found in traffic models that use DTA are demand modelling, route

choice modelling and network loading. Demand modelling determines

the number of people that wants to go from one place to another and

which mode (car, bike, public transport, etc.) they will choose. Route

choice modelling determines what route over the network people will

take. Network loading is the simulation of traffic over the road

network.

1.1.2. Evacuation modelling using EVAQ

A particular dynamic traffic process is the process of an evacuation.

Both the network and the hazard are continuously changing. In the

past few years a lot of research has been done on evacuations in the

field of transport planning and traffic flow modelling. Recently a model

by Pel, Bliemer and Hoogendoorn (2008) called EVAQ has been

developed. EVAQ stands for Evacuation of Vehicles using Assignment

with Queuing. The demand modelling determines when people will

start their evacuation from their home. This results in a growing

number of vehicles through time that wants to leave a certain area.

Route choice modelling entails the choice of destination (save haven)

and the route to take. Usually the destination choice is part of the

demand modelling. For evacuations the destination is however not

fixed, as the goal of the trip is not destination specific. The network

loading simulates traffic on the network. Outcome is the network state

(flows, speed, densities) through time. In EVAQ the DNL model from

Bliemer (2007) is used. It avoids the use of link travel time functions

(that result in the wrong location of queues) and explicitly model

queuing and spillback. For evacuations it important that the location of

vehicles is accurate as the hazard may strike certain areas at a different

time than other areas. This has consequences for the number of

casualties. EVAQ is used to evaluate the result of evacuation plans for

which the number of casualties is very important. Another important

criterion is evacuation time. For both criteria travel time plays an

important role. Although EVAQ does not explicitly model travel time, it

does model quantities that are related. Travel time can thus be an

output of the model. An important modelled quantity is flow, which is

 2 Network Performance Degeneration in Dynamic Traffic Management

the number of vehicles that can pass a certain location on the network

within some time span.

1.1.3. Network Performance Degeneration

By combining the flow of multiple locations of a network one can speak

of network performance. There are multiple ways to combine flows

such as weighted by link length, weighted by number of vehicles on a

link and not weighted. In any case, network performance is a network

wide quantity that explains the throughput of vehicles on the network.

Because of interaction between vehicles on the network, network

performance may be negatively influenced with an increasing number

of vehicles on the network. This is called network performance

degeneration (NPD). Processes that contribute to NPD have to do with

interaction between vehicles. Many interactions exist such as blocking

at intersections, lane changes, changes in speed etc. Chapter 3 will

elaborate more on this.

1.2 Problem definition

In any model it is desirable to have a high level of accuracy. For

evacuations this is difficult to achieve as traffic models cannot be

calibrated and validated to actual data from evacuations as such events

are (luckily) rare. It is therefore important to put much effort in

accurately implementing existing knowledge of transport planning and

traffic flow modelling. One important aspect of a road network is the

possible degeneration of traffic performance under certain

circumstances, as this may have large impacts on capacities and travel

time. Most traffic models are concerned with travel time, money,

emissions and safety. With evacuation modelling, human life is

concerned as it is threatened by the hazard additional to traffic

accidents. To preserve life, evacuations plans can be made that

optimise evacuation time of given areas. Such evacuation plans depend

largely on travel time and therewith on NPD. It has not been

investigated whether EVAQ accurately models processes that

contribute to NPD, leading to the problem definition of this research:

1.3 Research objective and questions

To improve the modelling of NPD the following research objective is

formulated:

.

Problem definition

.

Research objective
To develop modelling solutions that correctly include processes that

contribute to network performance degeneration in order to

improve the accuracy of EVAQ and other DTA models.

Evacuation plans are assessed largely by evacuation time for a given

area. Evacuation time is highly dependent on network performance

degeneration. It has not been investigated into what extend network

performance degeneration is accurately modelled in EVAQ. This has

to be investigated and if needed, EVAQ has to be changed and/or

extended.

 3 Network Performance Degeneration in Dynamic Traffic Management

Note that the research objective has a wider scope than the problem

definition, as other DTA models are included. This is because

improvements of EVAQ are focussed on the DNL module that can also

be implemented into other models. Research questions are divided in

two phases that are explained in section 1.4. The following questions

will be answered in the two research phases to reach the research

objective:

Phase one:

• What processes influence network performance degeneration?

• What processes are explicitly modelled in EVAQ?

• What processes are not explicitly modelled, but are an effective

part of EVAQ?

• What processes need to be included in order to achieve better

accuracy?

Phase two:

• What solutions can be created to include additional processes?

• What assumptions need to be made for these solutions?

• Are these assumptions more realistic considering network

performance degeneration than the assumptions they avoid?

• Are the processes indeed significant for network performance

degeneration?

• What are the consequences of the solutions on calculation time

and memory use?

1.4 Research approach

The project will contain two phases in which the first phase is an

investigation into EVAQ and NPD. The second phase is the generation

and evaluation of solutions.

1.4.1. Phase one
EVAQ will first be investigated in order to be able to expand and

change the model. Next, it is investigated what NPD is and what the

causes are. EVAQ will be assessed and model runs will be performed

with a Macroscopic Fundamental Diagram (MFD) as output. An MFD is

a relatively new ‘tool’ in transport modelling. The tool is still under

heavy research and cannot be used as a direct calibration tool [Daganzo

& Geroliminis (2008)]. In other words, trying to fit the MFD of a model

to the MFD of measurements will not guarantee accuracy. It however

can be used to analyse what happens on a network scale. Model runs

will only be performed for voluntary evacuations to filter out effects of

evacuation plans. By including a network loading map, modelled

processes can be identified. From phase one, shortcomings of EVAQ

can be exposed.

1.4.2. Phase two
The second phase will be the creation, validation, implementation and

evaluation of several solutions. Solutions are synthesized and a few will

be selected based on realism. Theory-based solutions are chosen as

 4 Network Performance Degeneration in Dynamic Traffic Management

these minimise the need of evacuation data. The selected solutions will

be fully developed in order to implement them in EVAQ. The new

model will be compared with VISSIM for voluntary evacuations in order

to assess the relevance of the newly implemented solutions.

Performance of the new model is assessed for all evacuation types.

1.5 Research scope

As many factors play an indirect or direct role in network performance,

the scope will be limited to what directly influences it, being the

infrastructure and the people, see Figure 1.1. Loosely translated into

the model world this is equal to the network and the vehicles. People

within the vehicles make many choices. Here, departure time choice,

vehicle choice, destination choice and route choice are not considered,

as these are an indirect influence. Direct influences are deceleration,

acceleration, lane changes, etc. These influences are a narrow definition

of ‘driving’ and are very common in microscopic models. EVAQ is

however a macroscopic model. Therefore the behaviour is dealt with in

terms of averages. One can for instance think of fundamental

diagrams, which are the result of microscopic behaviour.

Also important to mention is that focus is on the development of

modelling mechanisms rather than calibrating and validating model

parameters. The reason for this is twofold. First of all calibration data is

difficult to obtain, as evacuations are rare. Also, the time scope of this

research is too short to be able to include a descent calibration.

.

Figure 1.1: Scope of research
Only direct influences are considered

Scope

Hazard

Measures
Government

& crisis team

Infrastructure Network performance

People

Driving

Choices

 5 Network Performance Degeneration in Dynamic Traffic Management

1.6 Research relevance

The relevance of this research is subdivided into scientific and practical

relevance as listed below.

Scientific relevance:

• The DNL model by Bliemer (2007) is changed and extended

such that:

o Queuing in the link model is dynamically and efficiently

modelled with more precision.

o The node model assesses the capacity of the node itself

besides the still valid exit link capacities.

o The following assumptions are circumvented:

� Link inflow and link outflow have an equal

capacity limit.

� Every queue is at jam (practically full stop) state.

� Conflicts at the nodes are insignificant for

capacity. Maximum link inflow alone is

representative.

• The model has become theory-based. The macroscopic network

loading is coupled with microscopic phenomena. Theory about

microscopic behaviour is translated to an aggregate level.

• EVAQ can be further developed where model runs that are part

of an iterative development cycle can rely on more realistic

DNL. Results will be less obscured by errors from the network

loading giving a more clear view on the workings of other

model components.

• Insight in intersection mechanisms and capacity constraints is

gained and made explicit.

• The new weaving model introduces a new weaving theory in

which lane choice is an important factor.

Practical relevance:

• The gain in precision enables a better assessment of evacuation

plans. Such plans are important for the governmental

organisation Rijkswaterstaat.

• Other DTA models can benefit from the new DNL model.

• Using detailed model results enables a process of reversed

engineering in which for instance certain movements at

intersections may be prohibited during an evacuation in order

to minimise delays by flow interaction.

• Similarly for regular circumstances, black-spot analyses can be

performed into the constraining elements (such as turn lanes) at

intersections. Such elements may receive higher priority or

higher capacity.

1.7 Reading guide

The structure of this report is displayed in Figure 1.2. The chapters are

depicted into three general development phases: analysis, synthesis and

 6 Network Performance Degeneration in Dynamic Traffic Management

evaluation. Note that the usual development phase of calibration is

excluded, as explained in section 1.5 about the research scope.

Chapter 2 – This chapter gives an overview of EVAQ. The model

components and model loop are explained. The DNL model, important

in this research, is briefly discussed as having two sub models being the

link and the node model.

Chapter 3 – Section 3.1 is an investigation to what network

performance and the degeneration thereof is. Causes are identified.

Section 3.2 describes test runs performed with EVAQ to investigate

how these causes are modelled. Important output of these test runs is

the Macroscopic Fundamental Diagram (MFD). Following, section 3.3

lists observations from the test runs. Next, observations are made from

the model assumptions and mechanisms. Finally section 3.5 answers

the research questions of phase one. It is found that the link model can

be extended with more detailed queuing dynamics and that the node

model has no capacity constraints of the node itself.

Chapter 4 – In this chapter a series of possible solutions is presented.

Section 4.1 till 4.5 briefly explain ideas to improve the model. In section

4.6 two solutions are selected on the basis of realism and a new

modelling framework is presented in section 4.7. Cell Based Queuing,

where each cell explains a part of the queue, is selected for the link

model. For the node model it is recognized that capacity constraints of

the node itself will be included.

.

Figure 1.2: Report structure

E
v
a
lu
a
ti
o
n

S
y
n
th
e
si
s

Chapter 2 – EVAQ overview

Chapter 3 – Network Performance Degeneration and EVAQ

Chapter 4 – Synthesis of modelling solutions

Chapter 5 – Link model improvements

Chapter 6 – Node model improvements

Chapter 9 – Conclusions and recommendations

Chapter 8 – Evaluation of model performance and model outcome

Chapter 7 – Weaving model

A
n
a
ly
si
s

 7 Network Performance Degeneration in Dynamic Traffic Management

Chapter 5 – This chapter further explains how Cell Based Queuing

works. Section 5.1 first explains how the queue is represented. In

sections 5.1.1 and 5.1.2 it is explained how the maximum link inflow

and the potential link outflow are derived from the new queue

representation. Section 5.1.3 elaborates on short links within the new

representation, as the model needs to be able to deal with short links.

This follows from the fact that nodes will need to resemble actual

intersections rather than aggregated intersections. A numerical example

is given in section 5.1.4. Section 5.2 will give some conclusions.

Chapter 6 – In this chapter the various node type specific sub models of

the new node model are explained. In section 6.1 a few general

changes to the node model framework are discussed after which

section 6.2 presents the Lane Choice Model (LCM) that is the basis of

the node type specific sub models discussed in this chapter. Sections

6.3 till 6.5 are about sub models for controlled intersections,

uncontrolled & priority intersections and roundabouts. All these models

are based on existing models and formulas.

Chapter 7 – This chapter describes the sub node model for weaving,

merging and diverging sections at highways. It is treated separately as

it is a new model, does not use the LCM and needs to be calibrated, as

the model parameters are unfamiliar to traffic engineers. First, section

7.1 discusses existing weaving models and theory. Section 7.2 explains

the new model that is based on lane choice of the road users. A

numerical example is presented in section 7.2.4. The calibration, based

on FOSIM data, is given in section 7.3.

Chapter 8 – Various aspects of the new model will be evaluated in this

chapter. Section 8.1 is a qualitative assessment of the new link model

(CBQ). It is shown that both free flow and congested traffic show the

correct kinematic waves over the link. A sensitivity analysis is performed

that shows sensitivity to the capacity and saturation flow parameters.

Section 8.2 lists many qualitative observations of the various sub node

models that are based on movies that display the free flow and

congested traffic states of the links. Behaviour is as expected. Next a

quantitative comparison is shown with VISSIM. Generally the

intersection capacities are good but some link specific capacities show

rather large errors, especially for the controlled intersection and the

weaving section models. Section 8.3 shows the model significance of

both the new link and node model with respect to the old model and

the VISSIM results. Section 8.4 discusses the performance of the new

model. Calculation time is largely increased for scenarios that are

quickly calculated but only slightly increased for scenarios that are not

quickly calculated. Finally section 8.5 discusses the applicability of the

new model.

Chapter 9 – Conclusions and recommendations for both modelling and

implementation are given in this chapter.

 8 Network Performance Degeneration in Dynamic Traffic Management

2. EVAQ

.

This chapter will elaborate on EVAQ and its components. A general

overview will be given and the role of separate components will be

explained. This chapter is not a detailed coverage of EVAQ but enables

one to understand the general mechanism of EVAQ. Appendix A:

EVAQ Algorithm Overview is a full technical explanation of EVAQ. The

appendix can be used as a reference.

2.1 An overview of EVAQ

EVAQ is a traffic model aimed at evaluating plans for an evacuation.

Various hazards can be investigated, as long as a time-spatial pattern

can be described. The hazard not only creates casualties, it also

influences the network by changing link parameters such as maximum

speed and capacity. The model is dynamic in the sense that both traffic

flows and the network change over time. The dynamics are described

by three model components: demand modelling, route choice

modelling and network loading. A route generation method from

Bliemer & Taale (2006) and travel time estimation are used for the

route choice modelling.

The scheme in Figure 2.1 displays a typical loop of the EVAQ model for

a single time step. The travel time estimation, route set generation and

route choice model are not performed every loop as this significantly

reduces calculation time with minimum loss of accuracy. Instead, split

fractions of earlier time steps are used.

.

Figure 2.1: EVAQ Framework

 9 Network Performance Degeneration in Dynamic Traffic Management

2.2 EVAQ modules explained

2.2.1. Demand model

The loop starts at the demand model where the decision to start

evacuating is modelled. This decision depends on the time until the

hazard strikes and possibly the given evacuation instruction.

Instructions are included for mandatory or recommended evacuations.

Voluntary evacuations have no evacuation instruction. For

recommended evacuations a level of enforcement is included forcing

people with different amounts to leave according to the evacuation

instruction. The rationality of the road user is included with an

aggregated parameter that adapts the utility to leave a given origin. It

follows from the used logit model that this allows a distribution that

can be anywhere between fully rational and fully irrational

(indiscriminate). The demand model results in an increasing number of

vehicles per origin that will enter the road network if possible.

2.2.2. Route choice model

The route choice model determines split fractions at each node. Split

fractions depend on the available routes and the expected travel time

of these routes. Also the possible route instruction and rationality are

factors similar as in the demand model. It is assumed that people have

knowledge about the location of queues. With this assumption the

travel time estimation component can determine expected link travel

time. Links damaged by the hazard get infinite travel time. Multiple

routes are generated for each node with increasing stochastic variation

for link travel time. This captures differences in human perception of

expected travel time. Based on the deterministic travel time, the route

choice model divides flows from each node over the connecting links

based on the generated routes. The distribution results in split fractions.

The route choice model, route set generation and the travel time

estimation are not performed each loop. To reduce calculation time the

same split fractions can be used for a few successive time steps without

large consequences for accuracy.

 10 Network Performance Degeneration in Dynamic Traffic Management

2.2.3. Network loading model

The DNL model from Bliemer (2007) is used. Two sub models, the link

and the node model, determine the exact way in which vehicles

transverse the network.

Link model

The link model splits links into two parts, the free flow and the

congested part, as in Figure 2.2. Vehicles transverse the free flow

section at free flow speed. At the edges of the parts, cumulative flows

are tracked. Cumulative link inflow, queue inflow and link outflow are

the central quantities that the network loading is based on.

The task of the link model is to determine what number of vehicles can

enter and leave the link within a time step. Potential outflow is

determined by vehicle supply (inflow patterns) limited by capacity.

Maximum inflow is determined by the remaining link storage capacity

limited by capacity. The number of vehicles in queue determines the

queue length, assuming a single and fixed queue density. Based on the

queue length, the queue inflow is determined from the inflow pattern

and the current expected link travel time can be estimated for the route

choice model.

Node model

The node model applies split fractions to the potential link outflow of

the link model. If this results in a potential link inflow that exceeds

maximum inflow, all flows over the node are reduced accordingly. This

is how congestion is initiated either by the limit of capacity or

remaining storage capacity. The latter may be limiting with long

queues, creating a spillback mechanism.

2.3 Conclusions

EVAQ is a model that captures the traffic process of an evacuation.

Many assumption are contained within the model about departure

choice, route choice combined with destination choice and how

vehicles transverse the network. Mainly the DNL model is of interest

within the scope of this research. Central in the DNL model are the

cumulative flows. The next chapter will investigate NPD using a

macroscopic fundamental diagram, which is related to link flow. An

assessment will be performed to see if the DNL model of EVAQ deals

with the degeneration of network performance as expected.

.

Figure 2.2: Link model

[Bliemer (2007)]
tail node head node

 11 Network Performance Degeneration in Dynamic Traffic Management

3. Network Performance Degeneration

.

This chapter will start with an investigation into what network

performance is and the degeneration thereof. Next, causes to this

phenomenon are identified in order to evaluate if EVAQ is able to

model the degeneration of network performance. In section 3.2 some

test runs with EVAQ are described that have a macroscopic

fundamental diagram (MFD) as output, from which observations are

made in section 3.3. From chapter 2 it can be learned what EVAQ

models and what assumptions are made. Based on this, section 3.4

observes shortcomings in EVAQ with respect to the causes of NPD.

Finally some conclusions are drawn from the observations.

3.1 Network performance

Performance of a network is a rather general term that can be

interpreted in several ways. The main indicator within this document is

macroscopic flow. Macroscopic flow also has many definitions; here a

non-weighted summation of flow over all nodes is used. This measure

is used as links have multiple flows due to the link model. By the law of

flow conservation, node flow is equally valid. Note that origin and

destination nodes have no flow ‘over’ the node. Only en-route nodes

are thus considered. Other definitions of macroscopic flow exist, such

as weighted flow by length or pcu, but here the exact definition is not

important. Of importance are the conclusions that can be drawn when

looking at macroscopic flow. Such conclusions are easier to derive from

non-weighted flow. Travel time may seem a more intuitive indicator,

but it is less directly connected to the model. A problem is also that

travel time cannot be determined within a single time step. Any vehicle

arriving at its destination will have a travel time dependant on previous

time steps, obscuring abrupt changes such as the start of congestion for

a certain link. Interpreting how the model responds and works can be

assessed more directly by using flow.

Macroscopic flow can be plotted against the number of vehicles (or

pcu) that is on the network in total. This is called accumulation. By

subtracting the cumulative outflow from the network from the

cumulative inflow into the network, the net amount of vehicles can be

determined for any time step. How exactly the relationship between

the number of vehicles in the network and the macroscopic flow should

look like, is subject of extensive research, see Qian (2009). However,

some is known, the main thing being that from some point, network

performance should degenerate [Daganzo & Geroliminis (2008)], see

also Figure 3.1. The following sections summarize processes that

contribute to this decrease in flow. Flow decrease with density increase

(congested branch of fundamental link diagram), capacity drop and

spillback/gridlock are mentioned.

 12 Network Performance Degeneration in Dynamic Traffic Management

3.1.1. Flow decrease with density increase

From fundamental link diagrams (density vs. flow) it is known that if

density is higher than capacity density, there should be a decrease in

flow as density increases [Syllabus CT4821]. This decrease is a highly

stochastic process resulting in various definitions of fundamental

diagrams. One thing however is omnipresent in all; average flow

decreases gradually up to a point where flow becomes impossible, jam

density. An example of a fundamental diagram (density vs. flow) is

given in Figure 3.2.

The decrease in flow is the result of less efficient driver behaviour. As

density increases, the speed decreases more than by ratio. During

evacuations it may be expected that drivers behave differently,

resulting in a different shape of the fundamental link diagram. The

reduction of flow will however remain, as this is inherent to driver

behaviour. As the accumulation of a network increases, more and more

links will become congested. Total flow will thus start to decrease at

some level of accumulation.

3.1.2. Capacity drop

Many traffic flow researches assume the fundamental link diagram

shows a capacity drop [Ning Wu (2001), H. M. Zhang (2000), Syllabus

CT4821]. Different causes for this capacity drop can be assumed such

as driver behaviour and maximum capacity downstream. In terms of

driver behaviour, H. M. Zhang (2000) assumes different states where

drivers can be in. Drivers are relaxed, anticipating or balanced. The

.

Figure 3.1: Example

macroscopic fundamental

diagram

.

Figure 3.2: Example

fundamental k-q link diagram

Density

F
lo
w

Jam

density

Density at

capacity

Congested

Free

flow

Accumulation

(number of vehicles on the network)

N
e
tw
o
rk
 p
e
rf
o
rm
a
n
ce

(s
u
m
m
a
ti
o
n
 o
f
n
o
d
e
 f
lo
w
)

Degeneration

 13 Network Performance Degeneration in Dynamic Traffic Management

result is several highway capacities. Figure 3.3 shows an example

fundamental link diagram with capacity drop.

The effect of the capacity drop is a reduction of maximum flow at the

head side of congestion. For example at traffic lights this value, the

saturation flow, is about 1800 pcu/h. This is lower than regular

capacity values. Also in other cases such as a bottleneck on a highway

where vehicles are driving maybe at 50 km/h, it may be expected that

drivers are unable to achieve maximum outflow equal to capacity. The

effect of the capacity drop in fundamental link diagrams on MFD’s is

uncertain. Daganzo 2008 for instance does not show any kind of

capacity drop in his proposed MFD.

3.1.3. Spillback and gridlock

Bottlenecks (of any form) put a limit on the maximum flow of upstream

links. This includes intersections that are influenced by spillback from

upstream links. Through the intersection, the queue effectively

influences links further upstream. Note that the bottleneck itself has no

direct influence in macroscopic flow reduction. It puts a limit on flow

and any queue behind it suffers from further flow decrease only due to

stochastic congestion processes. The resulting flow might even be lower

than maximum flow in the bottleneck.

Links that are influenced by spillback will have reduced outflow,

resulting in NPD. Vehicles that want to go to the link with spillback

block vehicles that do not want to go to the link with spillback. All

vehicles on a link are thus influenced and all flow is reduced. If vehicles

enter the intersection while they cannot clear it, they block the entire

intersection and all upstream links suffer from outflow reduction. If a

set of links and nodes form blocking circles, gridlock has occurred. No

vehicle can leave the intersection as no vehicle can enter the links. No

vehicle can enter the link as the links are fully congested and no vehicle

can leave the links. Gridlock is a very real phenomenon.

For network performance, spillback and gridlock can have severe

effects. Especially if drivers have only few route options, the effect will

be strong.

.

Figure 3.3: Example

fundamental k-q link diagram

with capacity drop

Density

F
lo
w

Capacity drop

 14 Network Performance Degeneration in Dynamic Traffic Management

3.2 EVAQ test runs with an MFD as output

In order to find out how the chosen DNL method performs, a small test

network was used, see Figure 3.4. There are three origins (nodes 1, 2

and 3) where a flood will strike. Population is listed at the origins. There

is one save haven (node 10). Capacities are shown at the links in pcu/h.

By adapting the capacity of the entrance links (1-5, 2-4 & 3-6), the

effective demand on the network can be adjusted. The congestion on

the entrance links themselves plays no role as only en-route node flow

is considered. By adjusting the capacity of the exit link (9-10) the

amount of congestion and spillback can be adjusted. In this way both

dimensions of the MFD are covered.

Several runs were performed in which the following factors were used

on the original capacity of the entrance links: 1/3, 2/3, 1, 4/3, 5/3 & 2.

Note that vehicles do not leave spread evenly throughout an hour.

Actually, full capacity of the entrance links in the first time steps is

reached, even with a factor of two on capacity, since 98,2% of the

inhabitants wants to leave immediately. This is because the hazard will

strike in one hour, for which it is assumed (based on a logarithmic

departure pattern) that this percentage of people has started their

evacuation. The entrance capacities were used twice with different exit

capacities of 2000 or 6000 pcu/h creating severe and minor spillback.

Table 3.1 shows the parameters that were used in the runs. All runs are

voluntary evacuations to filter out influences of an evacuation scheme.

.

Figure 3.4: Test network

.

Table 3.1: Test run capacities

[pcu/h]

1

2

5 7

4

3 6 8

9 10

3000 3000

2000

3000 2000

6000
2000

2000
2000

3000

3000

4000

4000

4000

8000

4000

 15 Network Performance Degeneration in Dynamic Traffic Management

Voluntary evacuations let drivers select their own destination and route.

Usually, the closest destination and the shortest route are chosen. For

gridlock to occur, there must be diverse route choice behaviour. For this

reason, a separate test network was made as in Figure 3.5. The

network represents an urban network with a ring road. More important

however is that for this network, the route choice model was adapted.

Split fractions are made equal for all links, creating diverse traffic. Off

course this is not realistic route choice behaviour. The purpose of this

run is however to find out if the DNL model will produce gridlock if

circumstances are right.

3.3 Observations from the test runs

As described, MFD’s will be used to find out what phenomena are

present in EVAQ with respect to network performance. Each run

produces a certain shape as can be seen in Figure 3.6 and Figure 3.7.

The different runs are indicated with the symbol as in Table 3.1. Each

dot represents a time step.

.

Figure 3.5: Test network for

gridlock

4000 4000

4000 4000

4000 4000

4000 4000 4000 4000

4000 4000

4000

4000

4000

4000 4000 4000

4000
4000 4000

4000

4000

4000

4000

4000

 16 Network Performance Degeneration in Dynamic Traffic Management

Some key observations can be made from the resulting plots:

1. There is a more or less linear free flow part.

2. There are several horizontal parts.

3. Jumps are visible in between the horizontal parts.

4. In case of a severe bottleneck, performance degeneration is

visible.

5. The runs follow a clock-wise path more or less shaped as an

italic ‘p’. This is similar as found by Qian (2009).

6. Additional to the steps, there are points in between with no

apparent reason at first sight.

.

Figure 3.6: Macroscopic

fundamental diagrams with C9-

10 = 6000

.

Figure 3.7: Macroscopic

fundamental diagrams with C9-

10 = 2000

 17 Network Performance Degeneration in Dynamic Traffic Management

The linear free flow part is as expected. No NPD should occur for free

flowing traffic, nor does it actually arise.

The horizontal parts are quite remarkable. The flow remains perfectly

equal for a range up to 1000 till 2500 vehicles on the network. This is

not at all comparable to a fundamental link diagram. The node model

applies the same restrictions on link outflow during such a range, due

to spillback. To explain, Figure 3.8 shows a small part of a network

where links A and B merge into C. The second image shows that link A

and B are affected by spillback from link C. Assuming that flow out of

C remains constant, flow into C also remains constant. The third image

shows that congestion on both links A and B grows. Flow over the

merge node however remains constant. In other words, there are more

and more vehicles on the network while flow remains constant. Only as

soon as link B creates spillback will the macroscopic flow change, as in

the fourth image.

The steps between the horizontal parts can be explained in relation to

the spillback. As soon as a link is spilling back, flows of upstream links

will be reduced. The opposite happens if spillback disappears. Flows of

upstream links will then increase if demand is still present.

A fifth observation that can be made from the results is a path that

each run makes through the plots. It first rises up to a point where the

network is filled enough for spillback to limit or reduce flow. Then there

is a stepwise reduction of flow, where each step is a new link that is

affected by spillback as explained earlier. After a while there is no

traffic from the origins anymore, resulting in a stepwise reduction of

flow. The steps now represent links that become unaffected by

spillback. Flow could go up, but actually goes down because there is no

demand left. This is why spillback disappears in the first place. The path

is strongly related to the demand pattern and the size of the network.

What is important to note from this is the fact that if a congested

network depletes, it will not follow the same path as when it got filled.

This is different than generally assumed for fundamental diagrams of a

link. Qian (2009) observes a similar cause for the shape of the MFD in

the macroscopic DTA model MARPLE and the microscopic model

VISSIM.

A last observation is chaotic (at first sight) points in between the steps.

To analyse what this is, and also to verify the preceding statements, the

macroscopic diagram of run 12 was plotted next to the loaded network

into a movie. In this way the macroscopic diagram can be related

directly with traffic phenomena. It appeared that short bursts of

different route choice behaviour explained the chaotic points. The

.

Figure 3.8: Spillback
A

B

C

Growing

congestion

Constant flow

over node

 18 Network Performance Degeneration in Dynamic Traffic Management

Wardrop principle [Wardrop (1952)] applies, making people

temporarily use other links. Figure 3.9 shows this principle. Queues at A

and B share a downstream link. The queue at A will therefore have

lower outflow than the queue at C as both downstream links have

equal capacity and thus flow governed by the network exit link.

Vehicles from the queue at D will therefore mostly choose the route via

C. At some point however, the queue at A is shorter than the queue at

C and a few vehicles from D will change their route via E. Quickly the

queue at A becomes longer than the queue at C and C is again the

better alternative. Flow E increases macroscopic flow for a small time

span, resulting in the gain as seen in the close-up of the plot (note that

the path goes from right to left).

Similarly to the route choice phenomena, all previous statements were

also visually verified. Figure 3.10 shows all observed phenomena.

.

Figure 3.9: Route choice close-

up

.

Figure 3.10: Observed

phenomena

Extra link
gets filled

Spillback
affects link

Route choice
behaviour

Spillback disappears as
demand disappears

Queues shrink, spillback remains

D C

A

E

B

 19 Network Performance Degeneration in Dynamic Traffic Management

3.3.1. Gridlock

The gridlock test run did indeed result in gridlock as Figure 3.11 shows.

The nine central origins are all blocked. Vehicles on the nodes are

unable to clear the nodes as each node has a fully congested link

connected to it. EVAQ applies a single reduction factor on an

intersection thus all flows are blocked. The congested links have no

outflow, as the nodes allow no flow. There are in fact 2 blocking cycles

and one link ending into a cycle. In the MFD we can observe that

although there are about 8600 vehicles, there is no flow whatsoever.

3.4 Observations from the dynamic network loading

The previous section has listed observations made from the MFD. By

looking at the DNL model additional observations can be made. This

section will explain the assumptions about the queued traffic state of

the link model and the capacity constraints of the node model.

3.4.1. Queued traffic state

In EVAQ, some assumptions are made for the queued traffic state. The

most prominent assumptions are a maximum outflow equal to capacity

and a fixed density. These assumptions effectively assume the

fundamental diagram as shown in Figure 3.12. The free flow branch is

normal for a fundamental link diagram and needs no further

explanation. The congested branch is far from normal, see also Figure

3.2. The cause of the vertical branch is the assumption that the queue

is at a fixed density, being jam density. One could argue that there is a

fundamental difference between the traffic state that an individual

vehicle can be in and the average traffic state that the link can be in.

Note however that fundamental diagrams are derived for cross sections

and only apply to the entire link as the link is thought to be

homogeneous. In other words, the fundamental link diagram relates to

any cross section of the link, but is not about an aggregation of link

length. Within the modelling framework, cross sections will mostly

produce data points on the fundamental diagram of Figure 3.12. Only

if both free flow and congested traffic arise at a cross section during

the aggregation period will there be points in between.

.

Figure 3.11: Gridlock test run

 20 Network Performance Degeneration in Dynamic Traffic Management

The fundamental diagram in Figure 3.12 explains to a large extend

what happens in the test runs. The horizontal parts are explained by

the fact that as long as queues are present and node constraints

(spillback) remain equal, flow will not change. Clearly these

assumptions are ignorant to the gradual relation between congested

flow and density present in fundamental link diagrams, see also 3.1.1.

Such a fundamental diagram might result in flow even lower than the

limit by spillback. Qian (2009) found similar fundamental link diagrams

in the MARPLE DNL model that uses a similar horizontal queuing

framework. Densities between density at capacity and jam density are

also found, as the average link density is related to link outflow. Qian

identifies that the spatial separation of density and flow made the

model unsuitable for the generation of MFD’s.

3.4.2. Constraints in the node model

From the test runs it follows that the node model propagates

congestion over the nodes and spillback is correctly modelled. It can be

questioned if the amount of spillback is correct, as only link capacity is

included as a constraint on flow. Intersections themselves pose capacity

constraints on flows and can possibly lead to smaller flows and larger

queues. As an example of the current node model an intersection is

given with 2 incoming links, 2 outgoing links and 4 flows, see Figure

3.13 (left). The link to the north is a limiting constraint. It is shown that

capacity of 2000 is exceeded. By reducing all flows by a factor of 0.8,

the flow is reduced down to capacity (see the right image).

.

Figure 3.12: Fundamental

diagram according to EVAQ

.

Figure 3.13: Current node

model
1500

2000

1000 3000

 2500 > 2000

 5000 1200

1600

800 2400

 2000

 4000

 2400

Density

F
lo
w

Jam

density

Density at

capacity

Congested

Free

flow

Flow reduction by node

 21 Network Performance Degeneration in Dynamic Traffic Management

So far there seems to be no problem. Note however that there is a

conflict point between the two through movements that has a demand

of 2400 pcu/h. According to the Syllabus CT4822 the following

capacities apply to a conflict:

• Uncontrolled intersection

Depending on the flow ratio, the capacity of two crossing flows

is anywhere between 1600 and 2000 pcu/h.

• Controlled intersection

A base saturation flow of 1800 pcu/h is utilized during the

share of green time. Many factors can by applicable to the

saturation flow, many of which tend to lower the saturation

flow.

Apparently, in this case the capacity constraints of the intersection itself

are more limiting than the link capacity. Constraints of the intersection

should thus be included for a correct assessment of capacity.

3.5 Conclusions

Using the results presented in this chapter, the research questions of

phase one can be answered.

What processes influence network performance degeneration?

These processes are discussed in section 3.1 and are flow decrease with

density increase (fundamental link diagram), capacity drop for

congested traffic, spillback and gridlock. All these processes originate

from congestion. From section 3.4.2 it may also be concluded that

capacity constraints of both the links and the nodes can trigger

congestion.

What processes are explicitly modelled in EVAQ?

From chapter 2 it follows that the node model has two causes for

congestion that both relate to the maximum link inflow. Either the link

capacity is exceeded or the link is fully congested. Congestion is thus

explicitly triggered and spillback is explicitly modelled.

What processes are not explicitly modelled, but are an effective part of

EVAQ?

Related to spillback, gridlock is also an effective part of EVAQ. It has

been shown in section 3.3 that the single reduction factor enables

blocking cycles.

What processes need to be included in order to achieve better

accuracy?

Remaining processes that are not covered by EVAQ are flow decrease

with density increase, capacity drop and capacity constraints of

intersections.

From the answer to the last question it may be concluded that EVAQ,

and especially the DNL module, can be improved. A more detailed

representation of congested traffic will be needed to vary the density of

 22 Network Performance Degeneration in Dynamic Traffic Management

queues. A capacity drop should be imposed on congested traffic and

the node model will have to be extended with capacity constraints of

the node itself.

The next chapter will present several solution directions to implement

the above changes. The three following chapters will work out selected

solutions into more detail.

 23 Network Performance Degeneration in Dynamic Traffic Management

4. Solution directions

.

The previous chapter has shown that EVAQ omits certain processes

contributing to NPD. This chapter will explore some general ideas to

include these processes. Some of the solutions are then selected for

further development. The next three chapters will elaborate on the

selected solutions in more detail. The solutions discussed in chapters 5

& 6 for the link and the node model respectively are extensions of

existing theories, models and formulas. Chapter 7 elaborates on the

weaving model, which is part of the new node model. This model is

entirely new. For the link model, the solutions will try to capture

queuing into more detail. The node model solution will elaborate on

flow interaction at the node, possibly triggering congestion. The current

node model will not change as imposing flow reduction whenever

vehicles cannot clear the node nicely covers spillback and gridlock. This

holds for all node types as soon as congestion is significant.

Sections 4.1 till 4.3 will describe new ways to represent congestion.

Solutions are; using an average congested state, directly implementing

a fundamental diagram that relates outflow with the density of the

entire queue and Cell Based Queuing (CBQ), which also relates outflow

with densities in the queue but includes shockwave theory. Section 4.4

will elaborate on imposing a limit on outflow for congested traffic.

Section 4.5 will generally explain how capacity constraints of nodes can

be included. Next, a selection of the solutions will be made and a new

modelling framework is presented. Finally, conclusions will be drawn.

4.1 Average congestion state

A simple change to the model, without introducing any additional

computation time or complexity, would be to use different values for

congested traffic. Instead of using a queue density equal to jam density

(kjam), and a maximum queue outflow equal to capacity (C), one could

opt for more conservative and average values. One could for example

represent congested flow by the median congestion values:

2

−
= +

jam capacity
queue capacity k k

k k

2
=queue C

q

=
capacity

queue

capacity

q
u

k

Note that the head node might limit the flow. This would also change

the density and speed of the queue according to a fundamental link

diagram. The current model does not deal with this. Values could be

calibrated to represent congested traffic as close as possible. Data from

.

Equation 4.1

 24 Network Performance Degeneration in Dynamic Traffic Management

evacuations is however hardly available. A new fundamental diagram

arises from these assumptions as shown in Figure 4.1.

4.2 Direct implementation of a fundamental diagram

Another way to represent the queue is a new concept that uses a

fundamental link diagram to derive a single queue state. For a given

(out)flow, a fundamental diagram assumes a certain density and speed.

The density could be applied to the entire queue, assuming

instantaneous kinematics. This could potentially lead to vehicles

effectively going back. In order to prevent this, a limit should be

applied on the density. For example if 50 vehicles stand in a queue of

500m and 10 vehicles will leave within a time step, then the density of

the next time step can never be lower than 40 vehicles over the same

500m. This limit keeps the last vehicle in queue at time t on the same

spot for time t+1, see also Figure 4.2.

Density itself might limit outflow for the next time step. Applying this

with the same k-q relationship makes it impossible for density to get

below the defined k-q line while the limit of original queue length

makes it possible for k to be larger than the defined k-q line (Figure

4.3, B). For a representative k-q noise (Figure 4.3, A) either the k-q

relation needs to be defined lower than average (Figure 4.3, C) or

different k-q relations should be defined for k = f(q) and q = f(k)

(Figure 4.3 D).

.

Figure 4.1: Fundamental link

diagram with average

congestion state

.

Figure 4.2: Direct

implementation of

fundamental link diagram

.

Figure 4.3: k-q relations with

noise

Density

F
lo
w

Jam

density

Density at

capacity

Congested

Free

flow

Flow reduction by node

10 vehicles leave the queue with flow q

40 remaining vehicles at a lower density k where k = f(q)

Limit on k by applying original queue length

Additional flow into the queue

q

k

q

k

(A) (C)

q

k

(D)

q

k

(B)

 25 Network Performance Degeneration in Dynamic Traffic Management

4.3 Cell Based Queuing

In some DNL models [Daganzo (1993), Yperman, Logghe, Tampere &

Immers (2005)], kinematic wave theory is applied on either cells or

links. Different traffic states (flow, density, speed) are assumed to move

along a link with a certain wave speed. Assuming a triangular

fundamental diagram entails a single wave speed for free flow traffic

and a single negative wave speed for congested traffic (w). Cumulative

vehicle numbers now are related to cumulative vehicle numbers in the

past. The time that is looked back is dependent on the link or cell

length and the kinetic wave speed to be used. A problem with cell

based models is that they are CPU demanding as dynamics are

evaluated for each consecutive pair. A new modelling framework is

thought up that prevents calculations per cell but rather uses all cells on

a link at once. This framework is called Cell Based Queuing (CBQ).

To capture the theory of kinetic waves we can split the link into cells,

but here only for the congested part. Cells will have a length that is

equal to what a congested kinetic wave transverses in a time step. This

is different from Daganzo (1993) where each cell has a length related

to free flow speed. Each cell holds the average traffic state, initiated in

a particular time step. The cell states are initiated by link outflow. As

congested waves move upstream, so do the cell states. In this way the

congested kinematic waves are represented in the queue.

Link inflow

In the current model, maximum inflow of a fully congested link equals

the remaining storage, assuming jam density. Kinematic wave theory

however demands that maximum inflow equals the outflow some time

ago [Yperman, Logghe, Tampere & Immers (2005)]. The time that

needs to be looked back equals La/w or the time it takes for a

congested kinematic wave to transverse the link. This phenomenon is

represented by the cell states as the upstream cell actually holds this

traffic state. The maximum inflow is still the remaining storage, but the

storage is based on densities from the cell states.

Queue inflow

It makes no sense to apply a similar principle on queue inflow. Instead

of limiting the queue inflow of a fixed point, all potential queue inflow

should be accepted into the queue and the queue length should be

adjusted accordingly, as is practice in the current model. Note however

that the queue length is determined by the densities from the cell

states.

Link outflow

Having the queue respecting the cell states also imposes speeds in the

cells. Because of these speeds, there may be a limited number of

vehicles that could actually reach the link end within a time step, as can

be seen in Figure 4.4 where T is the travel time towards the link head

and S is the cumulative number of vehicles. The link is split into cells as

indicated by the dash-dot lines. For free flow traffic a limit on potential

outflow is already achieved from link inflow following wave speeds

 26 Network Performance Degeneration in Dynamic Traffic Management

where the speed is simply the maximum speed resulting in τ, which is

the (non integer) number of periods relative to t that vehicles now

entering the queue, entered the link. Note that ‘entering the queue’

equals ‘leaving the link’ if no queue exists. A linear interpolation over

link inflow is performed to determine the number of vehicles that can

reach the end of the link within the time step.

Different from existing models is the fact that the cell states are

aggregated into cumulative quantities per link, providing an easy and

fast way to derive momentary maximum link inflow and potential link

outflow. Dynamics for each cell pair do not need to be assessed.

Besides the free flow and congested waves described, there are also

standing waves. Lenz, Sollacher & Lang (2001) indicate that these

waves are usually formed by local speed control. They are the result of

stop and go waves that are flattened out. In order to include this

phenomenon, local speed control would have to be modelled. This

would be very complex, as cell length will probably not coincide with

the gantry locations where standing waves are initiated. Lenz, Sollacher

& Lang (2001) however also indicate that highway sections with a

standing wave have (almost) constant flow both over the section and

over time. Using a fixed fundamental diagram does not allow the

differences in speed around a standing wave at an equal flow. In

reality, standing waves contribute to the scatter often witnessed in

fundamental diagrams. Using a representative fundamental diagram

takes away the need to include standing waves.

4.4 Congestion outflow limits

In EVAQ it is assumed that outflow on a congested link can be as high

as the capacity of the link. Bliemer (2007) explains that capacity in this

context should be defined differently from capacity as in a fundamental

link diagram. However, in EVAQ all links have a single capacity

determining both the maximum in- and outflow. In congested state,

this seems an overestimation of capacity. Examples to contribute to this

argument are the base saturation flow at traffic lights (1800 pcu/h/lane

[Syllabus CT4822]) and the congestion discharge rate at highways

[Ning Wu (2001)] which might be related to capacity drop [Syllabus

CT4821]. Reducing queue outflow will degenerate network

performance to a larger extend than using capacity flow. Congested

.

Figure 4.4: Queued vehicles

that can reach the link end

within a time step.

T

S

 Time step

 Vehicles to end

 Link head Link tail

 27 Network Performance Degeneration in Dynamic Traffic Management

outflow capacity might be dependent on the type of link as people

behave differently on for example an urban road or a highway.

4.5 Constraints in the node model

The node model will need to be extended in order to include capacity

constraints of the node itself. Extra constraints can help to limit the use

of conflict points to the capacity of such a point. This capacity is

dependent on the type of node. Also the way in which flows interact is

different for different nodes. Similar to traffic light groups, there can be

multiple flows crossing all other flows in the same group. Figure 4.5

shows an example of this. Constraints should thus be defined for

groups, and not just for pairs. These constraints can potentially play a

large role in NPD. Focusing on this, a method for evacuation routing is

proposed by Cova & Johnson (2002) that minimizes the number of

conflict points since most traffic delays actually occur at intersections

[Southworth (1991)].

4.6 Selection of solutions

Five different implementations for proper NPD were discussed. Some of

these will be worked out in the following chapters and eventually

implemented into EVAQ. Four out of five solutions cover the link

model, one covers the node model. The solution for the node model is

however very general. What it comes down to is additional capacity

constraints. For the link model a solution must be selected. Theory

based solutions are preferred as these minimize the need for calibration

data, which is difficult to obtain for evacuations. To recap, the link

model solutions were:

1. Average congestion state

2. Direct implementation of a fundamental diagram

3. Cell Based Queuing

4. Congestion outflow limits

.

Figure 4.5: Conflict group

Conflict

group

 28 Network Performance Degeneration in Dynamic Traffic Management

The first solution is attractive as it is simple. But the level of realism is

low. Different queues may have very different average traffic states,

depending largely on the available outflow capacity. This can

potentially have large consequences for travel time and queue length

and therewith the number of evacuees. The second solution may

produce more realistic results, but this is very doubtful. Solution two

assumes limited instantaneous kinetics, which is a far cry from reality.

There simply is no theoretical background, not for the instantaneous

kinematics nor for the limit on density by original queue length. This

makes the solution unreliable.

The third solution has an inherent precision of queuing dynamics that

corresponds with the time step of dynamic traffic models. At the same

time it prevents cell-to-cell flow calculations. The solution covers both

in- and outflow using kinematic wave theory. Due to the theoretical

background and the full coverage of traffic dynamics that are currently

not modelled in EVAQ, this solution is selected for further

development.

The fourth solution is valid, but only covers a single aspect of queuing

(the outflow limit). This solution is also selected for further

development and will actually be a part of CBQ.

4.7 New dynamic network loading modelling framework

The new modelling framework of the DNL will remain similar as in

Figure 2.1 and is given in Figure 4.6. The link model is still based on

splitting the link into a free flow and a congested part. Potential

outflow and maximum inflow are still determined from the state of the

link but the congested traffic states are deduced by the intermediate

step of CBQ. The node model checks capacity constraints, that now

also include constraints of the node itself, and determines actual flows.

Determination of the origin and destination flows has moved from the

link model to the node model, as the node model determines the actual

flows. The link model implicitly uses the outcome of the node model by

calculating the number of vehicles on a link and in the queue. As CBQ

is based on past outflows, there is now also an explicit feedback from

the node model to the link model.

 29 Network Performance Degeneration in Dynamic Traffic Management

The complexity of the framework has reduced, but the individual

modules will increase in complexity. The link model defines the queue

as multiple cell states based on past outflows instead of a single

constant state. The node model will additionally check constraints on

the node.

4.8 Conclusions

In this chapter several solutions have been presented that include

processes that cause NPD into EVAQ. A selection has been made based

on precision and a preference for theory based models. The link model

will be expanded with CBQ in order to represent the queue with more

realism. Both link inflow and outflow can be influenced by this

representation. Additionally, a limit on congested outflow will be

introduced within the CBQ framework. For the node model, node type

specific sub models are needed that evaluate the capacity of conflict

groups. The new DNL framework has also been presented in which

there is an explicit feedback from the outflows to the link model as

CBQ depends on the outflows.

Chapter 5 explains in detail how CBQ works. Chapter 6 will cover the

node model and sub models for controlled intersections, uncontrolled &

priority intersections and roundabouts. All these sub models use a Lane

Choice Model that is also explained. Chapter 7 presents another sub

model of the node model, the weaving model. It is dealt with

separately as it does not depend on the Lane Choice Model and is not

based on existing models or formulas and thus also needs a calibration.

.

Figure 4.6: Dynamic Network

Loading framework

 30 Network Performance Degeneration in Dynamic Traffic Management

5. Link model improvements

.

The selected solutions of chapter 4 will now be explained in detail. This

chapter will elaborate on CBQ. Section 5.1 will explain changes for the

link model. The link model will be adapted by implementing CBQ. The

current model will stay in place, separating the free flow and queue

part. Also the main quantities, link inflow, queue inflow and link

outflow, remain. This framework is simple but functions well. The

queue part is however represented by cells, which increases the

complexity. An intermediate step is added that translates past outflows

to traffic states in the cells. For the cell at the downstream side of the

link, a limit on congested outflow will be put into place. This will be

explained in section 5.1.2. As can be learned from chapter 6, the node

model will require nodes that resemble actual intersections. A

consequence of this is that the link model will need to have the ability

to deal with short links. This is explained in section 5.1.3. A numerical

example will be given to illustrate the new link model after which

conclusions are presented.

5.1 Cell Based Queuing

CBQ is a new way to represent queuing dynamics in a discrete manner.

The discretisation is based on the time step used in EVAQ and a

fundamental k-q diagram. The fundamental diagram can be assumed to

be triangular [Yperman, Logghe, Tampere, Immers (2005)], resulting in

a constant congested wave speed. Such a congested wave consists of a

traffic state moving upstream on a link as vehicles force each other to

decelerate, or let each other accelerate. As this wave speed is constant,

the distance covered within a time step is also constant. A link can be

divided in multiple cells with equal length. Only the last cell can have a

different length because of the link length not being an integer multiple

of cell length. Note that the order of cells (first to last) is in the

direction of the congested wave, which is opposite of the driving

direction. The cells form an intermediate step to derive potential

outflow and maximum inflow of the link. This is the main difference

with existing cell based models where in- and outflow is determined for

each cell. With CBQ, the states in the cells together determine the

number of vehicles that can be stored on the link, and the number of

vehicles that can reach the end of the link. The states can be derived

from previous link outflows via the fundamental k-q diagram. In Figure

5.1 a link with four cells is displayed. The first cell has a state based on

link outflow of the previous time step. The second cell represents a

congested wave that has travelled two time steps and is thus related to

link outflow of two time steps ago. For the other cells the same applies

with an increasing number of time steps in the past.

 31 Network Performance Degeneration in Dynamic Traffic Management

Generally, the flows related to cells g = 1…G of link a have a link

outflow V equal to the difference of cumulative link outflow of two

time steps relative to the current time step t.

() () ()1−−−−= gtVgtVgV aaa

Knowing the link outflow that governs each cell state, density K can be

derived by applying the fundamental k-q diagram.

() ()()gVfgK aa =

With the equation of flow conservation, a speed W can be determined.

()
()
()gK

gV
gW

a

a

a =

So far, each cell has a traffic state based on outflow in the past. These

states move upstream by interaction between vehicles. This interaction

is hardly present for vehicles at the first cell. In reality it is often

observed that even from standing still, vehicles are able to achieve

outflows near 1800 pcu/h. This flow is usually called saturation flow.

Here saturation flow is viewed in wider terms, also including achievable

outflow from speeds above zero. This flow is the basis of limiting

congested outflow as described in section 4.4 and is denoted as qa
sat.

Here it is recognized that indeed such a limit is effective on the first

cell. The first cell is always able to reach qa
sat if the node allows. When

traffic starts to break down, outflow can be above qa
sat. If this is true,

vehicles are moving at such a high velocity that it is assumed that the

flow related to the first cell can be equal to outflow instead of qa
sat.

Here it is proposed to use the maximum of both as governing flow for

the speed (not density) of the first cell.

()
()()

()1

1,max
1

=

=
==

gK

gVq
gW

a

a

sat

a

a

Using saturation flow for the first cell also prevents a problem where no

flow recovery is possible. If outflow is zero at any time step, the speed

in the first cell will be zero. This makes it impossible for any vehicle to

reach the link head, again resulting in no outflow.

.

Figure 5.1: Cell states

.

Equation 5.1

.

Equation 5.2

.

Equation 5.3

.

Equation 5.4

V(t-1) > K, W V(t-2) > K, W

V(t-3) > K, W

V(t-4) > K, W

 Link head Link tail

 32 Network Performance Degeneration in Dynamic Traffic Management

Cell density and speed can be calculated to cell travel time T and cell

storage S (number of vehicles that fits inside a cell at the cell density)

using the cell length L.

()
()
()gW

gL
gT

a

a

a =

() () ()gLgKgS aaa ⋅=

Cell travel time and storage are the crucial quantities to derive

remaining link storage (maximum inflow) and the number of vehicles

that can reach the link head (potential outflow). The first step is to

calculate cumulative quantities.

() ()∑
=

=

=
gi

i

aa iLgL
1

() ()∑
=

=

=
gi

i

aa iTgT
1

() ()∑
=

=

=
gi

i

aa iSgS
1

These cumulative quantities might look like the graphs in Figure 5.2.

Note that cumulative cell length is linear with link length. Also note

that travel time and storage show similar patterns. This is because high

densities form high travel times because of low speeds.

.

Equation 5.5

.

Equation 5.6

.

Figure 5.2: Cumulative

quantities

L, T, S L, T, S L, T, S L, T, S

L

T

S

 Link head Link tail

 33 Network Performance Degeneration in Dynamic Traffic Management

Besides these cumulative quantities, the number of vehicles in the

queue and on the link is also required.

() ()tVtQX aa

q

a −=

() ()tVtUX aaa −=

Based on the number of vehicles in queue and the cumulative cell

storage, a queue length can be linearly interpolated.

()()q

aaa

q

a XSLL
1−=

This interpolation is shown graphically in Figure 5.3.

With the queue length, cumulative queue inflow until the next time

step (Q(t+1)) can be calculated in the same way as in the original

model using linear interpolation over link inflow, see Equation A.13. All

information to calculate maximum inflow and potential outflow is now

gathered. Queue inflow is known, completing the set of flows that

make up the link model.

5.1.1. Maximum inflow

Maximum inflow has two limits being link capacity per time step and

remaining storage. Remaining storage will only be limiting if the queue

spans most of the link. This is equal to the old model but the queue

densities and therewith the remaining storage will be different. Some

models, such as the original DNL model by Bliemer (2007), assume that

for fully congested links, maximum inflow is equal to current outflow.

Such an approach is ignorant to queuing dynamics and also takes away

the possibility for gridlock to occur. For these reasons, remaining

storage is used as the theory of shockwaves is implied if the remaining

storage is limiting. Remaining storage is defined as the total storage

(Sa(G)) minus the total current number of vehicles on the link (Xa).

()()aaaa XGStCU −∆⋅= ,minmax

.

Equation 5.7

.

Equation 5.8

.

Figure 5.3: Linear interpolation

from S to L

.

Equation 5.9

L

S
 Vehicles in queue

 Queue length

 Link head Link tail

 34 Network Performance Degeneration in Dynamic Traffic Management

5.1.2. Potential outflow

Potential outflow is seen as the number of vehicles that can reach the

link end within a time step. If there is no queue (Xa
q = 0), potential

outflow equals queue inflow as calculated earlier. Queue inflow is

cumulative, so a difference between two time steps results in potential

outflow. If there is a queue, potential outflow equals the number of

vehicles that can reach the link end (V’a
pot) obeying the queued cell

states. This can be any number of congested vehicles and maybe also a

few free flow vehicles if the queue is short.

() ()





>

=−+
=

0,'

0,1
q

a

pot

a

q

aaapot

a
XV

XtQtQ
V

Whether free flow vehicles can reach the link head or not, is not known

beforehand. There are two ways to find out if free flow vehicles can

reach the link head. The first is to find out if the travel time through the

queue is shorter than the time step. The second way is to calculate the

number of vehicles that could reach the link head assuming an infinite

queue, and then checking if the actual number of vehicles in queue is

less. Both require some additional steps to calculate V’a
pot as can be

seen in Figure 5.4 and Figure 5.5. All grey boxes in the figures

represent linear interpolation steps, that are CPU demanding. Assuming

that the queue will mostly have more vehicles than the potential

outflow, it is wise to use option two. This option is usually done after

two steps and sometimes after three, whereas option one is usually

done after three steps and sometimes after two.

.

Equation 5.10

.

Figure 5.4: Option 1 to

calculate Va
q´.

Usually three steps are performed,

sometimes two steps.

Queue travel time > time step

yes no

Calculate queued vehicles able to reach

the link head.

Calculate potential outflow using

cumulative inflow and free flow speed.

Calculate class-specific potential outflow

using cumulative queue inflow and the

total potential cumulative outflow.

 35 Network Performance Degeneration in Dynamic Traffic Management

Option two is mathematically represented in Equation 5.11. Note that

the class dimension (m) is now included. The steps will be further

explained.





>

≤
=

q

a

q

a

f

am

q

a

q

a

q

ampot

am
XXX

XXX
V

','

','
'

The first step of option two assumes an infinite queue to determine the

maximum number of queued vehicles that can reach the link head

within a time step (X’a
q). By linear interpolation, this number can be

found.

()()tTSX aa

q

a ∆= −1'

This is graphically represented in Figure 5.6.

If the actual number of vehicles in queue is larger, indeed all vehicles

beyond location A are queued. It is however not known how many

vehicles from each class form this flow. To acquire potential outflow for

class m, τ should be solved from Equation 5.13 (a) and put into

Equation 5.13 (b). Equation 5.13 (a) describes the following:

.

Figure 5.5: Option 2 to

calculate Va
q´.

Usually two steps are performed,

sometimes three steps.

.

Equation 5.11

.

Equation 5.12

.

Figure 5.6: Linear interpolation

from T to S

Theoretical number of queued vehicles able to reach link head > vehicles in queue

yes no

Calculate queue travel time.

Calculate potential outflow using

cumulative inflow and free flow speed.

Calculate class-specific potential outflow

using cumulative queue inflow and the

total potential cumulative outflow.

T

S

 Time step

 Vehicles to end

A Link head Link tail

 36 Network Performance Degeneration in Dynamic Traffic Management

• Cumulative queue inflow at time t-τ equals cumulative flow at

A at time t, where τ represents the travel time through the

queue up to point A. Note that this travel time is related to past

queue lengths and can thus not be determined from the current

queue length.

• Cumulative flow at A equals cumulative outflow plus the

number of vehicles between point A and the link head (X’a
q).

• From the previous two statements, cumulative flow at point A

can be removed, resulting in Equation 5.13 (a).

Equation 5.13 (b) rearranges Equation 5.13 (a) but as all known

variables are now class specific, the unknown (X’am
q) can be made class

specific.

(a) () ()∑∑ −=+
m

am

m

am

q

a tQtVX τ'

(b) () ()tVtQX amam

q

am −−= τ'

If the actual number of vehicles in queue is less than X’a
q, a few free

flow vehicles need to be included, giving X’a
f. These vehicles can travel

some distance at free flow speed and then go through the (short)

queue to reach the link head, all within a time step. The queue travel

time can be linearly interpolated, see Equation 5.14 and Figure 5.7.

()()q

aaa

q

a XSTT
1−=

The time remaining (∆t’a) for the free flow section is given by the time

step minus queue travel time.

q

aa Ttt −∆=∆ '

The free flow section from where vehicles are able to reach the link end

within a time step is defined as lying between points A and B where

point B is the start of the queue (see Figure 5.8). The length of this

section is equal to what vehicles at free flow speed can transverse in

the time step remainder ∆t’a.

.

Equation 5.13

.

Equation 5.14

.

Figure 5.7: Linear interpolation

from S to T

.

Equation 5.15

T

S

 Queue travel time

 Vehicles in queue

 Link head Link tail

 37 Network Performance Degeneration in Dynamic Traffic Management

max' aa

AB

a tL ϑ⋅∆=

As the queue length is known, the location of point A is now defined.

Similarly to cumulative queue inflow at point B, a cumulative number of

vehicles at point A can be determined. The (non cumulative) number of

vehicles between point A and the link head is equal to the difference

between cumulative inflow at point A and cumulative link outflow.

Using an equation similarly to Equation A.13 and subtracting

cumulative link outflow, the correct number of vehicles that can reach

the link head is known, see Equation 5.17. Note that τ is one period

extra as we need current cumulative flow at A and not cumulative flow

for t+1.

 ()  ()  ()  (){ }[] ()tVtUtUtUX amamamam

f

am −−−−⋅−+−= τττττ'

Finally, links that are affected by the hazard have an absolute maximum

number of vehicles, as all later vehicles are unable to continue. The new

cumulative link outflow may not exceed this value.

5.1.3. Short links
As can be learned from the next chapter about the changes to the node

model, conflicts at intersections are additional constraints that may limit

the flow over a node. The evaluation of node conflicts requires nodes

that resemble actual intersections. Common with macroscopic networks

is to model a cluster of intersections as a single node, such as

intersections that are simply very close to one another or intersecting

grade separated highways where many weaving sections, on ramps and

off ramps may be found. It may be opted to use nodes that represent

multiple intersections. Such nodes should be defined as type ‘none’,

conflicts will then not be included. It remains the responsibility of the

user to verify that conflicts at the specific intersections are not

significant for the desired model outcome. A better option in terms of

accuracy would be to model each actual intersection as a node. For the

described situations this usually involves short links that are a problem

for the DNL. Links that can be traversed within a time step are

inconsistent with the relation between link inflow, queue inflow and

link outflow. The node model thus desires the possibility to deal with

short links. As described by Taale (2008) there are two methods to

.

Equation 5.16

.

Figure 5.8: Determination of

location A

.

Equation 5.17

T Queue tr. time

 Time step

A B

Free flow Queue

At free flow speed

 Link head Link tail

 38 Network Performance Degeneration in Dynamic Traffic Management

circumvent this problem. The first is to shorten the time step. This may

be undesirable concerning the calculation time of the model. The

second method is to virtually lengthen the links so that the travel time

is equal to a time step. This would influence the travel time, but as the

time step is short, the deviation is small. Taale additionally introduces

steps to perform accurate spillback by using a critical link length that is

thus different from the virtual link length. A similar approach is

performed here. CBQ is performed as for all links. The maximum

number of congested cells, hence the maximum inflow and potential

outflow, represent the actual link length. However, queue inflow (is link

outflow if there is no queue) is interpolated from link inflow using the

virtual length to determine the travel time towards the queue or the

link head. This thus introduces slight delays but enables the relationship

between the flows. Practically the virtual lengthening can easily be

implemented by using the current time step as a maximum limit for the

time step where inflow is determined. As this is already performed in

the link model to accurately model fully congested links, nothing

actually has to change. Only an error message about short links has

been removed now that the method for short links has been theorized.

This creates a dynamic virtual length that is equal to the queue length

and the length that can be traversed within a time step at free flow

speed together. The dynamic length follows from the use of queue

inflow, of which the location is dynamic. Most DNL models only use

link inflow and link outflow, which are at fixed locations.

5.1.4. Numerical example
A numerical example for one link will now be shown. The link and

model parameters are:

Time step: 20 s / 0.005556 h

Length: 0.35 km

Maximum speed: 50 km/h

Lanes: 1

Capacity: 2000 pcu/h

Saturation flow: 1500 pcu/h

Jam density: 150 pcu/km

Wave speed: 18.1818 km/h

Last cell factor: 0.465 (last cell is not as long)

In the queue: 20 pcu

On the link: 25 pcu

The link has 4 cells for which the various traffic states are calculated as

below. Outflow V has been deduced from past link outflow. Density

and speed are derived from the triangular fundamental link diagram.

V (pcu/∆t) 7 6 5 7

V (pcu/h) 1260 1080 900 1260

K (pcu/km) 80.7 90.6 100.5 80.7

W (km/h) 15.6134 11.9205 8.9552 18.5874

 39 Network Performance Degeneration in Dynamic Traffic Management

Note that the first cell (to the right) has higher speed than the last cell

although their densities and flows are equal. This is because the first

cell has its speed based on the maximum of its flow and saturation

flow. From the cell states we can calculate travel time and storage by

also using the cell length where the last cell has a different length.

L (km) 0.0470 0.1010 0.1010 0.1010

T (h) 0.0030 0.0085 0.0113 0.0054

S (pcu) 3.7905 9.1515 10.1515 8.1515

The length, travel time and storage are made cumulative.

L (km) 0.3500 0.3030 0.2020 0.1010

T (h) 0.0282 0.0252 0.0167 0.0054

S (pcu) 31.2450 27.4545 18.3030 8.1515

To calculate the queue inflow we need the queue length. As there are

20 pcu in queue, the queue length spans the first 2 cells and partially

the 3rd cell. From the cumulative length we can interpolate to find Lq =

0.2208 km. With cumulative link inflow the queue inflow can be

determined but this is omitted here. Next the maximum inflow is

calculated. Capacity equals 11.1111 pcu/∆t but the remaining storage

is 31.2450 – 25 = 6.245 pcu. The latter is the minimum and thus the

maximum inflow. Finally the potential outflow needs to be determined

as the number of vehicles that can reach the end of the link. First, all

vehicles are assumed to be in queue. The time step is just over the

travel time of the first cell and the potential outflow would thus be just

over the number of pcu in the first cell. Indeed the interpolation results

in 8.2606 pcu. As this is indeed less than the number of pcu in queue,

the assumption holds and this is potential outflow.

5.2 Conclusions

The queue representation of CBQ has been explained. The derivation

of maximum inflow and potential outflow has been presented as being

dependant on the cell states. In this way the shockwave theory is

implicitly included. The link model as described relies on fundamental

diagrams. These are assumed to be triangular. A triangular fundamental

diagram is defined by three points, one of which is the origin. The

capacity point is described by the capacity value and the free flow

speed. The last point is the jam point. Flow equals zero, a jam density

needs to be given. The fundamental diagrams are thus given by three

parameters per link: capacity, free flow speed and the number of lanes,

which will be multiplied with a network wide jam density per lane. Note

that an explicit capacity gap is omitted in the fundamental diagram.

There is however a limit on congested outflow for the first cell. This

limit requires a saturation flow per link. Additional parameters for the

link model are thus network wide jam density per lane and a saturation

flow per link. Saturation flow should be determined carefully. Effects

from the node and effects from the link should clearly be distinguished.

 40 Network Performance Degeneration in Dynamic Traffic Management

For instance, a 2-lane link ending at an intersection with 4 turn lanes

should have a saturation flow in the order of magnitude of 2x1800

pcu/h and not 4x1800 pcu/h. Saturation flow is the maximum outflow

if the link itself is congested. Turn lanes do not increase this. They are

designed to buffer stochastic turn flow fluctuations. Flow in EVAQ is

not stochastic and so turn lanes are insignificant for the link model.

Generally, the node is not of influence for saturation flow. Saturation

flow is thus only different for links if human behaviour on the links is

different. These differences may have to do with level of relaxation and

the ability to see downstream flow recovery (anticipation).

The next two chapters will elaborate on the new node model. The new

link and node model will be evaluated in chapter 8.

 41 Network Performance Degeneration in Dynamic Traffic Management

6. Node model improvements

.

Chapter 4 has presented and selected solutions to improve the DNL

model of EVAQ with respect to NPD. Chapter 5 has explained the new

link model in detail. This chapter will do the same for the node model.

The main task of the node model is to check the potential outflows to

constraints by maximum inflow and of the node itself. This results in

actual link outflows and link inflows. First, in section 6.1 a new

modelling framework is explained for the node model. Next, the Lane

Choice Model (LCM) is explained. The LCM is a sub model of other

node type specific sub models. Sections 6.3 till 6.5 elaborate on the sub

node models for controlled intersections, uncontrolled & priority

intersections and (turbo) roundabouts respectively. Another sub node

model is for weaving sections. This sub node model is presented in

chapter 7. It is dealt with separately, as it is entirely new while the sub

node models of this chapter are all based on existing models and

formulas. Also the weaving model does not use the LCM. A last node

type that will not be discussed is the ‘None’ node type as this simply

means that constraints on the node will not be checked. This can be

useful for origin/destination nodes or nodes that connect connectors to

the network while there is no actual intersection but rather multiple

streets connecting to a single road. At the end of this chapter some

conclusions are given.

6.1 New node model framework

In section 3.4.2 it is explained that the current node model only deals

with the maximum inflow of the connecting links and is ignorant to

conflicts on the node itself. Depending on the node type (intersection,

roundabout, etc.) the conflicts have different mechanisms and different

consequences. The differences are of such an extent that we cannot

speak of a single node model. In fact, each node type has its own

model. Common among three of the sub-models is the LCM as

displayed in Figure 6.1.

The current node model in EVAQ will stay active, as maximum link

inflow still needs to be balanced with potential link outflow. The new

node models will limit flow further if constraints are violated. The order

of practice will be:

.

Figure 6.1: Sub-models of the

node model

(Turbo)

Roundabouts

Controlled

intersections

Uncontrolled &

priority intersections

Weaving, merging &

diverging sections

Lane Choice Model

 42 Network Performance Degeneration in Dynamic Traffic Management

• Determine potential directional flows by applying split fractions

from the route choice model on potential outflow.

• Determine secondary potential directional flows using the sub

node models.

• Determine actual directional flows as a result of the critical

maximum link inflow.

The application of split fractions on potential outflow may produce

directional flows in all directions, including a U-turn. In normal

circumstances this may not be valid as U-turns inhibit some resistance.

For evacuations however it may be expected that drivers are not very

sensitive to this. Some movements over nodes may not be possible,

such as a U-turn on certain turbo roundabouts and a left-turn from an

on-ramp. The latter can be dealt with by applying separated nodes for

divided roads. The first can only be dealt with by having a prohibition

matrix for the node. A complication is however that split fractions add

up to one. Leaving out a certain movement from a link will violate

traffic conservation unless the remaining split fractions are recalculated.

Therefore, split fractions at nodes with a prohibition matrix will be

recalculated for each link. Note that this recalculation is not performed

by the route choice model, but is simply an up scaling of the valid split

fractions. Currently, the node model does not accept separated nodes

for divided roads as EVAQ is based on a bi-directional network.

Because of this some definitions will change. Currently, so called joint-

nodes are recognized if the number of outgoing links is two, as this

would then not be an intersection but more a shape point defining road

curvature of a two-way road. Intersections have three or more

downstream links. These definitions assume a network with only bi-

directional roads. In reality there may be directional roads. Joints are

thus actually nodes where there is one upstream and one downstream

link. All other nodes form junctions. For route choice to be performed,

the number of downstream links should at least be two. New node

definitions are applied:

• Junctions are all nodes except origins and destinations. This

may include dead-end nodes, which should not exist in the first

place. Junctions are modelled as having inherent capacity

reduction by the sub node models, unless their type is ‘None’.

For all junctions the maximum inflow is checked.

• Route nodes are nodes that have at least two downstream links,

including origin nodes but excluding destination nodes. The

route choice model is applied for these nodes. Note that the

route set generation also uses these nodes.

Currently EVAQ accepts only one downstream link from an origin node.

All departures are put on this link. EVAQ will be changed to allow

multiple connector links for which the route choice model is applied.

Strangely, the route model is already applied for origin nodes.

 43 Network Performance Degeneration in Dynamic Traffic Management

The second step in the node model is the application of the sub models.

This is done before the maximum inflow checks for two reasons:

• Flows may interact on the node in a skewed way (priority). If a

downstream link should limit flow, all flow should be limited by

the skewed ratios. Therefore, the skewed flows should be

calculated first.

• Applying the maximum inflow constraints first would change

the absolute size of flows that may therefore not accurately

represent interaction on the node.

Constraints of the third step, and also some constraints of the second

step, will reduce all flow over the node with the same factor. Durlin &

Henn (2007) use a generalized merge model based on the merge model

by Daganzo (1993) that uses outflow division fractions based on

number of entering lanes, priority etc. This is neglected here as it is

assumed that potential link outflow will be representative for the

number of lanes of a link while the sub node models will deal with such

things as priority.

6.2 Lane Choice Model

The LCM is the first step in three sub node models. The LCM

determines how drivers select turn lanes at the end of links. This

behaviour is important as the use of multiple and/or shared lanes

towards a link is of great influence in the mechanisms of the sub node

models. This will become evident in the three following sections

describing the sub node models that use the LCM. Before the LCM is

explained, a few definitions of common terms will be given.

A turn flow is all flow from one

link to another. A turn lane is a

lane at the end of a link that

can be used to turn certain

ways over the node. Lane flow

is all flow from a turn lane.

Partial flow is part of a lane

flow belonging to a specific

turn flow.

Which turn lanes can be used

to reach the downstream links

is given in a lane map. The lane

map is an nxm matrix where n

is the number of downstream

links and m is the number of

turn lanes. It is mostly filled

with zeros and has a ‘1’ for

each link reachable from each turn lane. For instance the first element is

‘1’ indicating that the first (left) turn lane can be used to turn to the

first (U-turn) link. Each next ‘1’ is in the same row and next column, in

the next row and the same column or the next row and the next

column. This prohibits turn conflicts that are not allowed, following

intersection design practice. A block is a lane map combined with turn

.

Figure 6.2: LCM definitions Turn flow

Partial flow

Turn lane

Lane flow

Lane map

1 1

0 1

 44 Network Performance Degeneration in Dynamic Traffic Management

flows that will divide over the turn lanes. Finally, the flow-matrix is a

matrix similar to the lane map but filled with actual partial flows. The

rows sum up to turn flows and the columns sum up to lane flows. The

purpose of the LCM is to translate a block into a flow-matrix.

As the name suggests, the LCM is a choice model describing how

drivers choose their lane. This choice is a stochastic process, but it is

simplified to a deterministic problem. This consideration is reasonable as

only capacity conditions are considered and crucial. These

circumstances form a strong incentive to road users to divide equally

over the turn lanes. As long as the level of intersection knowledge is

large enough among the road users, turn lane use will be balanced. This

principle is very similar to the Wardrop principle [Wardrop (1952)]

concerning route choice. In fact, here an adapted version of the

Wardrop principle is used. The Wardrop principle is based on origins

and destinations with routes between them. People choose their route

in a way that all used routes have equal and minimal travel time. For

the LCM the link is the (only) ‘origin’, the downstream links are the

‘destinations’ and the turn lanes are the ‘routes’. Turn lane selection is

not performed by route travel time as in the Wardrop principle, but by

flow. This assumes that drivers experience a lower volume on an

adjacent lane as an incentive to change to that lane. The larger the

volume difference, the larger the incentive. The net result is equal lane

use. In reality drivers cannot observe flow. They can however observe

density. Assuming the lane speeds to be equal creates a direct

relationship with flow. The Wardrop principle is adapted as followes:

1. All used turn lanes towards a downstream link have equal total

flow, including flow towards other downstream links on the

shared turn lanes.

2. All possible but unused turn lanes towards a downstream link

have more total flow than the used turn lanes.

The adapted Wardrop principle assumes that intersections downstream

have no influence on lane choice, nor do reductions in lanes just

downstream of the intersection. In reality this is often not true if the

intersection or lane reduction is nearby. Another assumption is that turn

lanes have no length. The buffering effect is not included and the link

itself determines total potential outflow. Turn lanes here merely serve

as a flow separation. If these assumptions are reasonable or not, is

subject for further research.

Solving a route choice problem analytically is very complex, even on

small scale. Therefore an algorithm will be used. This algorithm is

different than for regular route choice problems. Instead of solving the

entire problem iteratively, the problem is split into independent sub-

problems that can be solved analytically. There are 2 splitters to derive

independent sub-blocks that form sub-problems. Independence means

that there is no overlap between blocks. This can be defined as:

 45 Network Performance Degeneration in Dynamic Traffic Management

• No turn lane within an independent block is used by a turn flow

that is outside of the block.

• No turn flow within an independent block uses a turn lane that

is outside of the block.

The algorithm is displayed in Figure 6.3 and starts at (1) with a block of

the entire intersection. The first splitter separates independent blocks

based on the lane map. A new block starts if the next turn flow has no

shared lane with the last turn flow. If there are no shared turn lanes

and only dedicated turn lanes, each turn flow is a separate sub-block. If

an independent block is found, it is forwarded to the second splitter (2).

The remainder of the original block, if any, is fed back into the first

splitter (3). The second splitter finds additional independence, as partial

flows may be zero. This complies with the definition of block

independence. The zero-partial flows are found by trying to assign flow

to the turn lanes (4). The lane assignment may return a flow-matrix

with negative partial flow(s). It is clear that negative flows are

impossible and so the assignment has failed. This can be solved by

assuming the most negative partial flow to be zero1. The block is split

into 2 sub-blocks that are both fed back into the lane assignment (5). If

all flows are positive, flows are consistent and will be returned (6). The

splitters split blocks but merge resulting flow-matrices, resulting in a

single flow-matrix for the entire link.

The first splitter splits blocks independent of flow, and it is therefore

not needed to apply the first splitter every time step. Instead, split

locations will be stored during the model initialisation.

The core of the algorithm is the lane assignment. Here, blocks are

translated into flow-matrices. Based on the 1st adapted Wardrop

principle, all lanes are considered to have equal lane flow, which is

average lane flow. The assignment runs through the lane map starting

at the first element and works a way to the lower-right corner. For

every partial flow, one of the following steps is performed:

1 Assuming any or all negative partial flows to be zero can produce inconsistency with the

adapted Wardrop principle. The most negative partial flow can be assumed to be zero as it is

most dominated by other partial flows. This has been made plausible by running many

randomly generated blocks through the algorithm. All were verified to comply with the

adapted Wardrop principle without having negative partial flows.

.

Figure 6.3: LCM framework
2nd splitter 1st splitter

block independent? block

negative flow?

yes

no

yes

no

Lane

assignment

flows flows

block

flows

1

2

3

4

6

5

 46 Network Performance Degeneration in Dynamic Traffic Management

• If the last (only) turn flow of a turn lane is reached, the

remainder of average lane flow is assigned.

• If the last (only) turn lane of a turn flow is reached, the

remainder of current turn flow is assigned.

These steps will become more apparent in the LCM example.

6.2.1. Lane Choice Model example

An example block will be run through the LCM. The U-turn is omitted

for clarity. The turn lanes are as in Figure 6.4.

Together with turn flows into the 5 possible turn directions this results

in the following block.

The 1st splitter finds independent sub-block 1 since the next partial flow

has no shared lane with the last partial flow, see Figure 6.5 (A). It is

forwarded to the 2nd splitter. The remainder (block 2) is re-analysed by

the 1st splitter and found to be completely dependent. Block 2 will thus

also be forwarded as such to the 2nd splitter.

.

Figure 6.4: Example turn lanes

1 1 30

 1 20

 1 1 10

 1 10

 1 1 20

.

Table 6.1: Example block

.

Figure 6.5: Blocks as split by

the splitters

Block 2

20 10 30

 20 20

 -10 20 10

Block 1

1 1

 1

 1 1

 1

 1 1

(A) (B)

1 1

 1

 0 1

(C)

Block 1a

Block 1b

25 5 30

 20 20

10 10

10 10

5 15 20

(D)

 47 Network Performance Degeneration in Dynamic Traffic Management

Block 1 will be run through the lane assignment. Average lane flow is

(30+20+10)/3 = 20. Since the upper-left partial flow is the last (only)

turn flow of the first turn lane, this must be the average lane flow of

20, see Figure 6.5 (B). The partial flow to the right is the last turn lane

of the first turn flow and must be 30 – 20 = 10. The next partial flow is

the last (only) turn lane of the second turn flow and is thus equal to the

second turn flow, which is 20. The next step will generate infeasible

results. The second lane already has a lane flow of 30 while average

lane flow equals 20. The next partial flow will be -10 to compensate.

The final partial flow can be derived in two ways, both resulting in 20.

All row-sums of block 1 are equal to the turn flows (30, 20, 10) and all

column-sums are equal to the average lane flow of 20. However,

partial flows cannot be negative. Assuming that the (most) negative

flow should actually be zero, block 1 can be split into sub-blocks 1a and

1b is in Figure 6.5 (C). Note the explicit ‘0’ splitting the sub-blocks.

Blocks 1a, 1b and 2 are run through the lane assignment resulting in

Figure 6.5 (D). The partial flows together form this flow-matrix:

From this it can be seen that all lane flows within the sub-blocks are

equal and that unused turn lanes have higher lane flows (25 over 10).

This complies with the adapted Wardrop principle. All row-sums are

equal to the turn flows. The partial flows will be used in the sub node

models described in the remainder of this chapter.

6.3 Controlled intersection model

Controlled intersections have traffic lights separating conflicting turn

flows in time. A conflict point between crossing turn flows should thus

be seen as a turn-by-turn use of infrastructure. The separation in time

goes further than two crossing turn flows. Groups of multiple turn

flows can be identified in which each turn flow crosses all other turn

flows within the group. All turn flows in a group thus have to take

turns using the infrastructure. The infrastructure has some capacity that

forms a limit for the turn flows together.

Turn flows that can use multiple turn lanes have multiple conflict points

with conflicting turn flows. Luckily, for every pair of turn flows, only

one conflict point is crucial. This is the conflict point where the highest

partial flows cross. Remember that partial flows are a part of a turn

flow that is specific to a certain turn lane. Also for conflict groups, only

these crucial conflict point need to be taken into account. Figure 6.6

shows that if the conflicts indicated by the dots are not constraining,

than all other conflicts are also not constraining as they have less flow.

25 5 30

 20 20

 0 10 10

 10 10

 5 15 20

25 25 10 15 15

.

Table 6.2: Example flow-

matrix

 48 Network Performance Degeneration in Dynamic Traffic Management

For each conflict group with maximum partial flows p = 1...P the

following general constraint holds:

conflict

P

p

p Cq ≤∑
=1

max,

The sum of all maximum partial flows (qmax) in a group may not exceed

conflict capacity (Cconflict). As there is hardly any interaction between the

turn flows on controlled intersections, the conflict capacity can be

considered to be equal to effective saturation flow at traffic lights. The

base value is 1800 pcu/h. As mentioned earlier insection 3.4.2,

saturation flow can be reduced by many factors. Although most

reductions are small, their aggregated effect should not be ignored. A

representative reduction is made up from a peak hour reduction (~0,9)

and a turn reduction where half of the flows are turning (~0,9). These

reductions are taken from the program VRIGEN, which is a Dutch

traffic control design program. Additionally there is also time loss at

controlled intersections. This follows from yellow time and clearance

time for safety. The effective time fraction for a standard cycle length

of two minutes is about 0,9 (Syllabus CT4822). The effective saturation

flow with all 3 reductions thus becomes 1800*0.93 ~ 1300 pcu/h.

Setting this as conflict capacity assumes that at any time one of the

partial flows in the conflict group has a green light. Depending on the

number of green phases, the number of flows in the conflict group and

right turns, this may not be true. Figure 6.7 shows a few situations that

describe the ratio between conflict size and effective green phases. Part

(A) shows an intersection with four roads. Such an intersection has

conflicts with three or four phases. As all 3-phase conflicts hold a right

turn, each green phase facilitates the conflict. Note that this is only

possible if the right turn has only dedicated turn lanes. Two possible

phasing schemes of four phases are shown, both facilitate the conflict

equally. Part (B) shows the same intersection where westbound traffic

is not possible. This creates a 2-phase conflict without a right turn that

is not a subset of any other conflict. Again, no matter what specific

phasing scheme is chosen, they perform equally. As there is no right

turn in the conflict, only two out of four phases facilitate the conflict.

Finally part (C) shows the same intersection as in part (B) but with a 3-

phase group. Just as in part (A) all 3-phase groups have a right turn

.

Figure 6.6: Conflict group

.

Equation 6.1

 800 500+300

 400+200

 900 700+200

 49 Network Performance Degeneration in Dynamic Traffic Management

and are thus facilitated by all green phases if the right turns have only

dedicated turn lanes.

The principle of Figure 6.7 can be generalized to the following:

• The number of green phases is equal to the largest conflict size.

• Conflicts with a size equal to the number of green phases are

facilitated by all green phases.

• Smaller conflicts with a dedicated right turn are facilitated by all

green phases.

• Smaller conflicts without a dedicated right turn can use only the

number of green phases equal to their own size.

For the last set of conflicts, the hourly capacity is not 1300 pcu as the

conflict has a green light for less than an hour. Depending on the green

times of the phases the effective time could be anywhere between 0

and 60 minutes per hour. However, should the conflict be critical it may

be expected that the green times are balanced towards the specific

green phases of the conflict given that optimised control is assumed.

The worse case would thus be an equal demand (green time) per green

phase if multiple conflicts are more or less critical, giving an effective

time of sc/ngf where sc is the size of the conflict and ngf is the number of

green phases. To derive the phase demand, the control scheme needs

.

Figure 6.7: Conflict size versus

green phases
(A) Valid 3-phase conflict with right

turn, each green phase

facilitates the conflict.

(B) Valid 2-phase conflict without

right turn, 2 out of 4 green

phases facilitate the conflict.

(C) Valid 3-phase conflict with right

turn, each green phase

facilitates the conflict.

Valid: not a subset of any other

conflict.

(A)

(B)

(C)

Right turn that is only possible if there are only dedicated right turn lanes

 50 Network Performance Degeneration in Dynamic Traffic Management

to be known. This sort of information is not easily obtained for all

controlled intersections in a reasonably sized network. It is better to

apply an average reduction factor, which is half way between optimal

and worse conditions giving an effective capacity as in Equation 6.2.








<

⋅

+
⋅

=

otherwise

turnrightdedicatednoandns
n

ns

C gfc

gf

gfc

conflict

1300

2
1300

To check if any conflict group violates the general constraint, the LCM

is used to derive partial flows. Next, for each link pair (i,j) the

maximum partial flow (qijmax) is listed in the maximum partial flow

matrix. Another matrix of the same size holds the total turn flows (qij)

per link pair. Constraints are defined as a summation of certain

elements of the maximum partial flow matrix. The conflict group that

has the highest saturation will be reduced if necessary. Along with it, all

turn flows and partial flow that come from the same links are reduced.

Other links are not influenced as vehicles wait on the links and not on

the node if they are faced with a red light. Still, also on controlled

intersections vehicles are often seen standing on the intersection, but

this is because of a reduced maximum link inflow (spillback). This

should not be confused with conflict points that limit green time and

therewith link outflow. After this initial reduction of flows, again the

conflict group that has highest saturation will be reduced, but again

only if necessary. This continues until all conflict groups are at or below

conflict capacity.

Given that each individual conflict is not violating the general constraint

does not mean that the actual capacities are known. Conflicts are

namely dependant on each other, as different conflicts should assume

the same share of green time for a specific green phase that is part of

both conflicts. If we assume there are four phases and one critical

conflict needs a green-time distribution of 10%-15%-40%-35% while

another needs 25%-10%-20%-45% it is obvious that together they

need 25%-15%-40%-45%, which is 125% in total. A reduction of 0,8

should thus be applied to the green times. This directly translates to a

reduction of 0,8 of the turn flows. Depending on the green phases and

the demand distribution, such a reduction can have a large range. A

single representative value for all situations does not exist. Earlier it was

chosen to not include the control scheme as this is much input that is

difficult to obtain. Instead it is assumed that if we use a green phase for

all flows per link, a representative reduction will be found. Each critical

conflict will list its green time distribution over the relevant links. The

maximum green time fractions of all links are added. If the total is

above one, all turn flows will be reduced accordingly.

.

Equation 6.2

 51 Network Performance Degeneration in Dynamic Traffic Management

6.3.1. Example of the controlled intersection model

The model will be shown for an example intersection with six links

(three roads) as shown in Figure 6.8. At the entering links the hourly

partial flows are shown as calculated by the LCM. Conflict groups and

the conflict capacities are given.

For an intersection with 3 roads where all movements are possible,

there are in total 4 conflict groups. In the example, 2 of the conflict

groups have demand higher than capacity.

11381600800800max,max, >=+=+ ESNS qq

13001800800800200max,max,max, >=++=++ SNESNE qqq

As the first conflict group has highest saturation, all partial flows from

the accompanying links N and E will be reduced by a factor of

1138/1600 = 0,71. The green time distribution is 50% for N, 50% for

E and 0% for S. Two partial flows of the second over saturated conflict

group are also reduced, resulting in a different conflict group demand.

13001511800568142max,max,max, >=++=++ SNESNE qqq

As the reduced conflict group demand of the second group is still

higher than conflict capacity, partial flows from N, E and S are now

reduced by a factor of 1300/1511 = 0,86. Partial flows from N and E

are reduced in total by a factor of 0,71·0,86 = 0,61. The green time

distribution of this conflict has lower fractions than the previous conflict

except for link S where 53% is needed. In total the two conflicts need

50+50+53 = 153%. A reduction of 1/1,53 = 0,65 follows for all flows.

All resulting partial flows and reductions are shown in Figure 6.9. These

partial flows are still consistent with the assumptions in the LCM as

there is one net reduction factor for all partial flows from a link. These

changes do not influence the relative ratios between partial flows from

a link. Figure 6.9 also shows that links can be affected by conflict

capacity into different extends.

.

Figure 6.8: Example of a

controlled intersection

N

E

S

 800 600+200(E)

 800 600+200(E)

400

800

Conflicts groups cap.

1. NS ES 1138

2. NE SE 1138

3. SN EN 1300

4. NE ES SN 1300

 52 Network Performance Degeneration in Dynamic Traffic Management

6.3.2. Permitted conflicts

So far, only fully controlled intersections without a U-turn have been

covered. U-turns have been omitted for the simple reason that traffic

lights do not account for them. In this context the U-turns could be

viewed as permitted conflicts. Besides U-turns there may be explicit

permitted conflicts. These are often encountered as a right turn bypass

or permitted left turns with small flows. As U-turns only conflict with

turn flows towards the same link, it is expected that the capacity of the

link will properly deal with these flows. For explicit permitted conflicts,

several solutions may be applied:

• For right hand bypasses an additional link could be created. The

right turn at the intersection itself should then be omitted.

• Permitted conflicts can be modelled as a non-permitted conflict.

The consequence of this would be that the number of green

phases might increase which in turn will decrease capacity of

conflict groups that are not facilitated by each of the green

phases.

• Permitted conflicts could be omitted all together. This is useful

if the expected flows performing the permitted turns are very

low. The influence of modelling such a conflict as non-

permitted might be worse than omitting the turn. Note

however that the influence of modelling a permitted conflict as

non-permitted is non-existent for regular balanced intersections

with dedicated right turn lanes as all conflict groups have a

capacity of 1300 pcu/h.

6.4 Uncontrolled and priority intersection model

Uncontrolled intersections have no traffic lights and drivers have to

regulate infrastructure use by themselves. This is achieved by right-of-

way rules. In the Netherlands, traffic from the right has right-of-way.

Priority intersections also have no traffic lights. What is different from

uncontrolled intersections is that one road always has right of way,

indicated by road signs and road markings. For both intersection types

it holds that each turn flow has a (possibly empty) set of other turn

.

Figure 6.9: Example of a

controlled intersection with

reduced partial flows

N

E

S

 320 240+80(E)

 450 337+112(E)

160

320

Reduction factors:

N: 0,40

E: 0,40

S: 0,46

 53 Network Performance Degeneration in Dynamic Traffic Management

flows that need to get right-of-way. This is also the framework for the

determination of turn flow capacity for both intersection types.

In the Syllabus CT4822, a model is described that determines the

capacity of a minor flow (needs to give right-of-way) intersecting with

a major flow (gets right-of-way). The model is based on headway

distribution in the major flow and gap acceptance of the minor flow.

The major flow headways are assumed to be exponentially distributed.

The model is computed with Equation 6.3.

()
h

tq
C criticalmain

normi

⋅−
=

exp

where,

tcritical = minimum gap acceptance

h = average headway between following vehicles

A property of the exponential distribution is the ability to add major

flows into a single value. This is proven in Equation 6.4 where f is a

reduction factor based on maximum minor capacity.

()

() ()
() ()

() ()()

{ }

h

tq

tqtq
h

h

htq

h

htq

h

ffC

C

m

n

critical

n

main

critical

m

maincriticalmain

critical

m

maincriticalmain

m

normi









⋅−

=⋅−⋅⋅⋅−⋅

=






 ⋅−
⋅⋅

⋅−
⋅

=⋅⋅⋅

=

∑
=1

1

1

1max

exp

exp...exp
1

0exp

)exp(
...

0exp

exp0exp

...

The capacity of each turn flow is thus defined by the sum of the

accompanying major flows. As turn flows can be minor related to some

turn flows and major related to others, the capacities cannot be

determined directly if flows from the same time step need to be used.

This will require an iterative solution method. Note however that the

model from the Syllabus CT4822 was derived for hourly averages. If an

hour is concerned, delay time between major vehicles entering the

intersection and minor vehicles being influenced are insignificant. If

however a small time step is concerned, it is evident that not all

vehicles will actually interact within the time step. Therefore it is

considered to be equally accurate to use turn flows from the previous

time step. Minor turn flow capacity can thus be obtained directly.

Using the previous time step as such could potentially introduce

unstable oscillations between time steps. For instance assume we have

an empty intersection. If at one moment much traffic would reach the

intersection from several directions, these flows would be unrestricted,

as the previous time step had no flow. This unrestricted flow may be

well above capacity, resulting in no capacity for the time step after

.

Equation 6.3

.

Equation 6.4

 54 Network Performance Degeneration in Dynamic Traffic Management

that. A 2-step cycle will thus exist where much flow allows no flow,

and no flow allows much flow. To overcome this unstable behaviour,

major flows are determined by the average of the previous two time

steps. Still, the first step with traffic would exceed capacity, but at least

the oscillation is filtered in only a few time steps. This phenomenon

only occurs with large changes in demand for an intersection from

several directions at the same time step.

For normal circumstances the minimum gap acceptance is about four

seconds and the average headway for following vehicles is about two

seconds. During evacuations it can be expected that the minimum gap

acceptance is lower. Very low values can also represent the

unwillingness of minor turn flows to actually give way. A minimum gap

of zero seconds more or less creates a 50%-50% ratio between the

major and minor flow.

Up to now the phrase minor/major flow has meant a (sum of) turn

flow. This is not accurate as turn flows can share lanes with other turn

flows and/or use multiple lanes. A minor flow should thus be a

combination of partial flows that use the same turn lane and are faced

with the same set of major flows. The major flow can still be taken

from turn flows. If a turn flow is conflicting, all of its partial flows are

conflicting. Each constraint is thus a group of minor partial flows p =

1...P and major turn flows f = 1...F as input in Equation 6.5.

{ }

h

tq

q

F

f

criticalf
P

p

p











⋅−

≤

∑
∑

=

=

1

1

exp

The following steps need to be performed to acquire the groups:

1. For each turn lane and for each possible combination of partial

flows from that turn lane, find the common major turn flows of

the partial flows.

2. Discard minor and major sets that are a subset of another minor

and major set.

These steps are performed once prior to the model run. For a simple

priority intersection with a 1-lane minor road, Figure 6.10 shows all

resulting groups of step one. The bottom row can be merged as they all

have the same major turn flow (only one actually). The last group is

equal to the merged group. Figure 6.11 shows merged groups if the

minor road would have two lanes.

.

Equation 6.5

.

Figure 6.10: Major/minor

groups on a priority

intersection for a 1-lane minor

road.

 55 Network Performance Degeneration in Dynamic Traffic Management

The LCM is used to derive the partial flows. For all merged groups the

general constraint is checked. If the minor flows exceed capacity, all

flows (also outside of the group) from the link will be reduced. The

reduction is based on the most saturated group per link.

6.5 Roundabout model

6.5.1. Regular roundabouts

Roundabouts are characterized by a one-way circular road to which all

roads connect. In the Netherlands, traffic on the roundabout has right

of way. Roundabouts can have one or two lanes. A relatively new

phenomenon is turbo-roundabouts, but these will be covered in the

next section. Roundabouts could be placed in the framework of

uncontrolled and priority intersections, as a group of minor partial flows

has to give right of way to major turn flows. This would however

generate poor results. First of all, the LCM is incapable to divide

intersecting traffic at multi-lane links. Intersecting traffic is traffic on the

right lane going left and traffic on the left lane going right (or through).

Also, the so-called pseudo conflict is of significant influence, which the

uncontrolled and priority intersection model cannot deal with. A pseudo

conflict is caused by traffic that is perceived as staying on the

roundabout, but actually exits the roundabout. Drivers reaching a

roundabout are not always able to distinguish what drivers on the

roundabout will do. For the Dutch situation a model developed by

Cetur (1986) and adapted by Bovy (1991) [Yperman & Immers (2003)]

is able to determine entrance capacity for various layouts. A division of

traffic over turn lanes is not necessary. The model explicitly deals with

the pseudo conflict and the number of lanes on the roundabout and on

the link. The model is based on circulating flow (conflicting) and exit

flow (pseudo conflict).

The framework is given in Figure 6.12. The used formula can be seen in

Equation 6.6.

()
γ

αβ exitcirc

entry

VV
C

+−
= 9

81500

where,

.

Figure 6.11: Merged

major/minor groups on a

priority intersection for a

2-lane minor road.

.

Figure 6.12: Roundabout

entrance capacity framework

.

Equation 6.6

Vcirc

Vexit

Centry

 56 Network Performance Degeneration in Dynamic Traffic Management

α = Pseudo conflict influence (0 – 0.8)

β = Influence of number of lanes on the roundabout (0.6 – 1.0)

γ = Influence of number of lanes on the entrance link (0.6 – 1.0)

The numerical ranges for the parameters were recommended by Bovy.

The value for α is related to the distance between C and C’ as shown in
Figure 6.13. The graph shows a range depending on the exiting flow

rate and the circulating speed. The flow rate is of influence because

drivers tend to use their direction indicator more with higher flow rates.

The speed is of influence as the distance C-C’ is covered in less time.

The value of α could be made dependent of exit flow and roundabout
diameter (speed). There is however no validated method to do this.

Representative values will be used (thick line in Figure 6.13).

Similarly to the model from the Syllabus CT4822 for minor flow

capacity, the model from Bovy is for hourly averages determined with

an iterative method. The time step is however very small and it cannot

be stated that equilibrium holds for traffic within a single time step. It is

considered equally accurate to use the flows from the previous 2 time

steps as with uncontrolled and priority intersection, enabling a direct

determination of entrance capacity for all links. All that is needed per

link is a set of turn flows that make up Vcirc and Vexit and the

parameters. The sets of turn flows and parameters can be determined

prior to the model run. Often the values for β and γ, and sometimes
also for α, are the same for all connecting links and can be coupled to

the node. Links that have no individual parameters can use the

parameters of the node.

6.5.2. Turbo roundabouts

At the time the model from Bovy was developed, turbo-roundabouts

did not exist. Today they are increasingly common in the Netherlands.

In terms of capacity and conflicts, the following differences can be

identified:

• Drivers have to select a turn lane before entering the

roundabout.

• When entering the roundabout, drivers can be faced with zero,

one or two roundabout lanes, depending from which link and

which lane they enter the roundabout.

• Related to the conflicting roundabout lanes, drivers entering the

roundabout have different sets of partial flows that form Vcirc.

.

Figure 6.13: Relation between

distance C-C’ and α.

C’ C

 57 Network Performance Degeneration in Dynamic Traffic Management

Looking at the differences it can be observed that the model is

unusable on a link level. Indeed Yperman & Immers (2003) state that

new formulas should be derived from existing empirical formulas, but

coefficients could not be calibrated, as there are not many turbo-

roundabouts with the same layout. For this reason Yperman & Immers

(2003) used micro simulation. Here it is identified that the basics of a

roundabout are not different at a turbo-roundabout, only the layout is.

On lane level the same method could be applied. Figure 6.14 shows

how input can be defined for each lane, accounting for the various

types of turbo-roundabout approaches. Lanes A & B but also E & F

have equal properties. Still the lanes need to be modelled individually as

turbo-roundabouts force the use of turn lanes, that is, the lanes have

individual demand. The LCM is used to derive this demand. Also, the

partial flows from the LCM form the flows at H till P. For example, flow

L is the partial flow from the north to the south and flow H is all partial

flows from the north and west to the east and north. An interesting

fact to note is that few entrance lanes have no Vexit, possibly

contributing to the capacity difference often witnessed between 2-lane

and turbo roundabouts. All lanes have, evidently, one lane ‘at the link’

as the model is performed at lane level for turbo-roundabouts. The

value for γ is therefore always one.

Just as with uncontrolled intersections, as soon as a link or lane capacity

is exceeded, all flows from the link are reduced by a single factor.

De Leeuw (1997) developed an extension on the model from Bovy that

included the influence on capacity of slow traffic (cyclists), which is

very common in the Netherlands. Slow traffic is not a part of EVAQ and

is therefore excluded.

 58 Network Performance Degeneration in Dynamic Traffic Management

6.6 Conclusions

Based on existing models and formulas, models have been developed

and explained for controlled intersections, uncontrolled & priority

intersections and (turbo) roundabouts. The LCM is a common sub

model without parameters that has been developed to model the lane

choice behaviour at intersections and turbo roundabouts. Generally the

existing models are used in frameworks that relate all flow over an

intersection. The parameters of the existing models are already

calibrated for normal circumstances. Calibration for evacuation

circumstances is difficult and beyond the scope of this research. In

chapter 8 it will be evaluated if output of the new models resembles

data of the microscopic model VISSIM. The next chapter will first

elaborate on the newly developed weaving model. This model will need

to be calibrated. The calibration is also performed in the next chapter.

.

Figure 6.14: Lane specific

properties at turbo-

roundabouts

A B

C

D

E F

G

H

I
J K

L

M

N
O P

Vexit Vcirc

Lanes at

roundabout

A - H 1

B - H 1

C I J+K 2

D I K 1

E L M 1

F L M 1

G N O+P 2

 59 Network Performance Degeneration in Dynamic Traffic Management

7. Weaving model

.

This chapter relates strongly to the previous chapter. In the previous

chapter the new node model and node type specific sub models have

been explained. This chapter additionally explains the newly developed

weaving model. The reason for this development is the lack of a

generally accepted weaving model. First, two existing models from the

1985 HCM and by Rakha & Zhang (2006) are discussed. The

theoretical background and drawbacks are mentioned. As these models

are empirical and layout specific, a flexible theory-based model is

desired. The new weaving model is explained in section 7.2. In section

7.3 the new weaving model is calibrated. At the end of this chapter

some conclusions are made.

7.1 Existing weaving models

Weaving sections are found at highways where an on-ramp is closely

followed by an off-ramp (<1500m). The on-ramp and/or off-ramp can

also be replaced with a 2nd highway. Vehicles may have to change lanes

to arrive at the desired downstream link. Merge sections are equal to

weaving sections but without the off-ramp. Diverge sections are equal

to weaving sections but without the on-ramp. Merge and diverge

sections can be seen as special cases of a weaving section. They can be

modelled by a weaving section model if demand for or from the

missing ramp is zero. No generally accepted model to determine

weaving section capacity exists. Models do exists such as the 1985

HCM approach described in the Syllabus CT4821 and a model by

Rakha & Zhang (2006). The latter appears to be able to determine

capacity with reasonable accuracy. These models do however have

drawbacks. The models are layout specific and are determined

empirically. If a layout is found that is not dealt with in these models,

there is no way to interpolate or extrapolate the underlying mechanism

of capacity reduction to the new layout. Both models assume that

capacity reduction is caused by ‘turbulence’ by the lane changing

behaviour. The net capacity is measured either from reality or a

microscopic model, and the result is mathematically fitted to functions

that are thought to describe the following factors influencing the

amount of turbulence:

• Demand pattern

• Speed differences between merging roads

• Percentage of trucks

• Weaving section length

The demand pattern is often specified as having a volume ratio

(weaving flow over total flow) and weaving ratio (smallest or off-ramp

weaving flow over all weaving flow). Speed differences influence

deceleration behaviour and therewith the amount of turbulence.

However, at capacity conditions, it can be assumed that drivers adapt

their speed to more or less match the speed on the other road. The

 60 Network Performance Degeneration in Dynamic Traffic Management

effect of speed differences thus disappears for capacity estimations.

Rakha & Zhang (2004) show that speed differences are indeed not a

significant factor. They also show that the percentage of trucks can be

translated into pcu by the 2000 HCM method. For now this is not

necessary as EVAQ has only one mode, being passenger cars. Weaving

section length is thought to force lower speed to compensate the

reduction in time to weave. These lower speeds eventually lead to

lower flows.

Both models describe capacity as the flow just prior to traffic

breakdown. The assumptions made about the state of the influencing

factors seem valid for capacity conditions. However, that these factors

are significantly related to turbulence prior to traffic breakdown is

unlikely. Prior to breakdown traffic is in free flow state, a traffic state

that is not characterized by turbulence. In other words, the turbulence

is insignificant prior to traffic breakdown and can thus not be a

determining factor of capacity. Turbulence would also mean that

vehicles need more space resulting in a lower capacity per lane. In

reality it is often seen that at weaving sections there are lanes that

actually have more vehicles than on regular sections. For a short while

at least, drivers may accept very small gaps.

7.2 New weaving model

Looking at traffic on weaving sections both in reality and microscopic

simulations, a more logical cause, also related to the previously

mentioned factors, can be found. This cause is the choice of lane that

drivers make before the weaving section. It is often witnessed that the

right lane of the highway is used at capacity, while other lanes are not.

This is because traffic that wants to leave the highway prefers this lane.

Also traffic that stays on the highway might not experience a very

strong incentive to not use the lane, especially heavy vehicles. If a

weaving section is short, the preference to use the right lane increases.

With similar mechanisms the demand for all lanes at the weaving

section can be explained. Depending on the layout and demand

pattern, it may be another lane that is critical. Generally we can state

that weaving section capacity is reached whenever a lane at or just

before the weaving section is used at capacity.

Here, a new model is developed that looks at lane demand. It is

thought that drivers will experience some utility for the lane they select.

In fact, drivers have a preferred movement over the weaving section

and will select the lane that enables them to make this movement. Any

movement is defined as a combination of an entrance and an exit lane,

using the least lane changes needed in between. As drivers may deviate

from their preferred movement on the weaving section, the utility only

describes the initial preference and not the actual movement. Still, the

lane demand at the start of the weaving section may be determined

with these utilities. As soon as drivers have finished their desired

movement, additional lane changes are often performed to evenly

distribute lane demand at the downstream side of the weaving section.

That is, per downstream link.

 61 Network Performance Degeneration in Dynamic Traffic Management

7.2.1. Weaving section capacity factors

As mentioned earlier, speed differences and the percentage of trucks

can be excluded. The demand pattern and weaving section length are

also excluded as explained below. As no factors remain, capacity will be

a fixed value that may not be exceeded by demand.

Demand pattern

Movement utility is expected to be insensitive to demand, as only

saturated conditions are important. The model therefore does not

describe under-saturated conditions and behaviour. Utility being

insensitive to demand may seem counter-intuitive, but the demand

pattern still defines capacity. Demand is namely divided by the utilities.

The more weaving traffic, the more weaving traffic assigned to the best

weaving movement, the higher the lane demand, the lower the

weaving section capacity.

Weaving section length

Weaving section length is thought to be an influence on the utility

itself. However, for weaving sections that are designed following the

Dutch standards (see NOA), the lengths are such that the influence is

often insignificant [Vermijs (1998)]. Note that the negative influence of

the weaving section length is large for very short weaving sections, but

quickly reduces as weaving section length increases. Therefore the

Dutch standards avoid short weaving sections in the first place. Still, the

length may be significant in some cases, but this will be considered later

on. For now the weaving section length is ignored.

7.2.2. Weaving movement utility factors

Factors contributing to the utility for the movements have not yet been

recognized. An obvious factor is the number of lane changes that needs

to be made. Each lane change has some disutility (ulc). Complicating

design features are tapers at both the merge and diverge locations. For

example at the merge taper, many vehicles may perform a lane change.

Vehicles on the taper lane either merge with the main road or select the

right lane. Vehicles on the right lane of the highway may also change a

lane to the left. Lane capacity thus needs to be considered after the

merge taper. The utility should describe the net utility of all choices

made prior to this point, including the taper. If there is no merge taper,

this is equal to the utility just before the weaving section. If there is a

merge taper, the downstream lane that it merges with will have

disutility (uta). This disutility will deviate traffic from the taper lane, but

also from the right lane of the highway. Note that this disutility does

not describe the preferred movement prior to the weaving section, but

prior to the critical section as in Figure 7.1. The utility per movement

from lane i to lane j can be calculated as in Equation 7.1.

() () talcpostpreij udujjiiu ⋅+⋅∇+−∇+= 0

with,

{ }



 −∈

=
otherwise

rri
d

tt

0

,11
0

where,

.

Equation 7.1

 62 Network Performance Degeneration in Dynamic Traffic Management

pre∇ Adjustment array for the lane number translating the lane

 number before the critical section to the lane number inside the

 critical section. This translation is needed to account for a taper.

post∇ Adjustment array for the lane number translating the lane

 number after the critical section to the lane number inside the

 critical section. This translation is needed to account for a taper.

d0 Dummy variable, one if lane i is the merging taper lane or

 merging with it, zero otherwise.

rt Number of the merging taper lane, zero if there is no merging

 taper lane.

7.2.3. Flow distribution and peak demand

The utilities can be represented in an m-by-n matrix where m is the

number of lanes entering the weaving section (including a possible

taper lane) and n is the number of lanes leaving the weaving section

(also including a possible taper lane). For each from- and to-link

combination, the actual flows performing certain movements can be

found using the logit model in Equation 7.2, assuming the utilities to be

independent and identically Gumbel distributed.

()
()∑∑ ⋅⋅

⋅⋅
⋅=

i j

ij

ijABAB

ij
ud

ud
qq

λ

λ

exp

exp

1

1

with,

() ()



 ==

=
otherwise

BjpostAipre
d

0

,1
1

where,

qij
AB Flow from link A to link B making the movement from lane i to

 lane j.

qAB All flow from link A to link B.

.

Figure 7.1: Critical section

related to tapers

.

Equation 7.2

Critical section

Critical section

Critical section

 63 Network Performance Degeneration in Dynamic Traffic Management

d1 Dummy variable, one if the movement is from link A to link B,

 zero if not.

uij Utility to perform the movement from lane i to lane j.

λ Logit scale factor, here equal to one.

pre Array with road numbers (one or two) of lanes prior to the

 weaving section.

post Array with road numbers (one or two) of lanes after the

 weaving section.

Assigning flow to all utilities, we have an m-by-n matrix with flows. If

there is a merging taper, two rows can be merged. Note that this

addition is valid as only the net choices determining the situation at the

start of the critical section are considered. Each row now describes the

demand of a lane at the start of the critical section. Often, this is not

the exact location where maximum lane demand is found. Especially for

type B weaving sections, where one weaving flow has to perform at

least two lane changes, the influence of vehicles that change over a

lane is high and found somewhere downstream of the start of the

critical section. The exact location is not important, the additional lane

demand however is. In this context one would also think of other flows

that move from or to a lane, but as stated earlier, the utilities do not

describe actual movements, but rather preferred movements. Weaving

traffic that changes over a lane is a certain demand for this lane while

all other flows will tend to distribute around the peak demand (in

space). An additional variable (fco) is introduced, describing a fraction of

weaving flow over a lane at the peak demand (at a non-fixed point in

space) additional to the demand at the start of the weaving section, as

it is suspected that the actual peak demand will be located close to the

start of the critical section. It can be expected that fco will also capture

some phenomena that are not explicitly modelled, such as traffic

performing lane changes from the critical lane at the very start of the

critical section. What is important is that it gives representative peak

lane demand although precise behaviour at the critical section is

uncertain. Weaving traffic performing at least two lane changes here

thus creates an additional lane demand as in Equation 7.3.

() ()∑∑ ⋅⋅⋅=
i j

AB

ijco qddfrD 32

with,

() ()
() ()




=

≠
=

jpostipre

jpostipre
d

0

1
2

() ()

() ()








<∇+>∇+

>∇+<∇+

=

otherwise

rjjrii

orrjjrii

d
postpre

postpre

0

,

,
1

3

where,

D(r) Additional demand on critical section lane r by weaving flows

 over lane r.

d2 Dummy variable describing that a flow must be weaving. One if

 the movement from i to j is weaving, zero if not.

.

Equation 7.3

 64 Network Performance Degeneration in Dynamic Traffic Management

d3 Dummy variable describing that a flow must change over lane

 r. One if the movement changes over lane r, zero if not.

If any lane’s capacity is exceeded, all flows will be reduced by a single

factor, assuming equal flow disruption for all lanes. The constraints are

defined as in Equation 7.4.

() () peak

i j

AB

ij CrDq ≤+









∑ ∑

∇∈ '

where,

'∇ Set of lanes where () rii pre =∇+ . This is usually one lane.

 Only if there is a merge taper will this set be two lanes in order

to merge the demand of the right lane on the highway and the

 taper lane.

peakC Lane capacity for the peak (rather than average) demand where

the location (cross section) is not fixed but related to the

variable location of the peak demand.

Flow over a weaving section is often lower after traffic break down

than just before traffic break down (capacity). Such a drop in flow

should not be seen as an attribute of the weaving section itself, but

rather as a capacity drop of the congested links. In other words, CBQ

should deal with this. A representative value for saturation flow

(maximum congested outflow) is thus of importance for links upstream

of a weaving section.

7.2.4. Example of the weaving model

Parameters resulting from the calibration in section 7.3 are:

ulc = -0,95

uta = -0,17

fco = 0,79

Cpeak = 3791 pcu/h

An example will now be presented using the weaving section and

demand to the left from Figure 7.2. None of the links’ capacity is

exceeded. The demand to the right is the reduced demand for which

the calculations will be given.

.

Equation 7.4

.

Figure 7.2: Example weaving

section

A1
A2

C1
C2

B

D1
D2

700
3000

1300
800

661
2831

1227
755

Critical section

f = 0,94

 65 Network Performance Degeneration in Dynamic Traffic Management

The lane change utilities are given in Figure 7.3 (A). Note that the taper

lane (C1) has equal lane change utility as A2. Figure 7.3 (B) shows the

diverging effect as flows A2 and C1 come together. Figure 7.3 (C) is

the total utility. Applying the logit model per link combination (boxes in

thick lines), the flows as in Figure 7.3 (D) result. The three lanes at the

critical section have a demand of 1471, 3487 and 843 pcu/h

respectively. These are the row sums of table (D) where A2 and C1 are

merged. The middle lane at the critical section has additional demand

from weaving flows A1-D2 and C2-B as these change lanes over lane

A2-D1. The additional demand equals 0,79x(263 + 409) = 531 pcu/h.

Total lane demand now reaches 3487 + 531 = 4017 pcu/h. As this

exceeds peak capacity, a reduction factor of 3791/4017 = 0,94 follows.

7.3 Calibration of the weaving model

The weaving model was calibrated to data generated by Fosim

(www.fosim.nl), which is a microscopic model validated for Dutch

highways. For the calibration it is important to cover many

combinations of input in order to let the model represent a wide range

of possibilities. Input consists of the weaving section layout and the

demand pattern.

7.3.1. Weaving layouts

The selected layouts are all possible layouts following the rules below.

These represent Dutch weaving sections (see NOA).

• The number of entering lanes is three, four or five.

• The number of exiting lanes is three, four or five, but never

more than one lane different from the number of entering

lanes.

• Links with a taper have two lanes.

• Links next to a link with a taper have at least two lanes.

• All directions have a minimum of two or less lane changes.

The resulting layouts are listed in Table 7.1. Five groups are

distinguished based on layout similarity (not to be confused with

capacity reduction similarity). Group A exists of standard weaving

.

Figure 7.3: Utility and flow

matrices B D1 D2

A1 0 -0,95 -1,90

A2 -0,95 0 -0,95

C1 -0,95 0 -0,95

C2 -1,90 -0,95 0

 B D1 D2

A1 0 -0,95 -1,90

A2 -1,12 -0,17 -1,12

C1 -1,12 -0,17 -1,12

C2 -1,90 -0,95 0

 B D1 D2

A1 0 0 0

A2 -0,17 -0,17 -0,17

C1 -0,17 -0,17 -0,17

C2 0 0 0

 B D1 D2

A1 528 680 263

A2 172 1483 574

C1 891 264 102

C2 409 121 313

(A) Lane change utility (B) Merge taper utility

(C) Total utility (D) Movement flows

 66 Network Performance Degeneration in Dynamic Traffic Management

sections where the entering and exiting lanes are in balance and all

weaving movements require at least one lane change. Group B layouts

are similar to group A but the movement weaving to the right needs at

least two lane changes while the other weaving movement requires

none. Group C is similar to group A but there is one taper. Group D is

similar to group B but also here there is one taper. Group E is similar to

group A but with two tapers.

A21 (250m)

A22 (500m)

A31 (417m)

A32 (500m)

A41 (500m)

B12 (833m)

B22 (625m)

B22’ (833m)

B23 (833m*)

B32 (833m)

B32’ (833m*)

C22 (625m)

C22’ (625m*)

C32 (708m)

C32’ (708m*)

D22 (833m)

D22’ (833m*)

D32 (833m*)

D32’ (625m*)

E22 (625m*)

E32 (708m*)

All layouts also have a 2-digit number where the first digit indicates the

number of entering lanes at the left link and the second digit indicates

the number of entering lanes at the right link. A taper lane, if present,

is also included within the second digit. Horizontally flipped (axial)

counterparts are indicated by an apostrophe. For these the digits

indicate the outgoing lanes. Vertically flipped (tangential) layouts are

omitted as tangential movement to the right or left is considered equal.

For example there is no B21 (nor a B12’ which is equal).

Weaving section lengths given in Table 7.2 were set at the default

length for each configuration as in NOA. Some configuration were not

listed and got a length equal to a similar layout.

7.3.2. Demand patterns

For each layout, various demand patterns need to be included in the

calibration process. The left road goes from A to C and the right road

goes from B to D. EVAQ uses split fractions at the nodes so the same

fraction from A and B will go to C. The demand pattern can thus be

defined by an A/B ratio and a C/D ratio. These ratios are rewritten into

ψA = qA/(qA+qB) and ψC = qC/(qC+qD). The two remaining fraction are

easily calculated as ψB =1 – ψA and ψD =1 – ψC. The ratios follow some

.

Table 7.1: Calibration layouts

*) length determined by similar layout

 67 Network Performance Degeneration in Dynamic Traffic Management

rules to prevent situations that either will not reach capacity, or will

reach capacity of a downstream link rather than the weaving section:

• There is at least as much traffic as the minimum capacity of link
C or D.

• Capacity of links A and B is not exceeded.
• Capacity of links C and D is not exceeded as this is captured by

maximum link inflow.
Mathematically the rules form Equation 7.5.

()DCBA CCqq ,min≥+










+
≤≤









+
− 1,min0,1max

BA

A

A

BA

B

qq

C

qq

C
ψ










+
≤≤









+
− 1,min0,1max

BA

C

C

BA

D

qq

C

qq

C
ψ

Per layout, up to 25 demand patterns are investigated. First, ψA is
determined as five equidistant values spanning the allowable range.

Next, either qA or qB is equal to the corresponding link capacity,

whichever is critical. The other flow can be determined by the ratio and

is less than or equal to its corresponding link capacity. Knowing the

maximum flow at links A and B, the range for ψC can be determined. It
will also span the range with five equidistant values. In total this gives

5x5 = 25 demand patterns. Some are however excluded. The corners of

the ψA/ψC plane neither comply with the definition of a weaving

section, nor with a merge, nor with a diverge section. All traffic comes

from one link and goes to one link. The edges of the ψA/ψC plane are
included as these form merging and diverging situations since one link

has zero flow. For some layouts and at certain values for ψA, the range

for ψC consists of a single value. These layouts will have four demand

patterns less. All resulting ratios are given per layout in Table 7.2.

Information needed to determine the allowable demand pattern is the

link capacity in Fosim. These were found by excluding trucks, using a

maximum speed of 100 km/h, and having each of the three Fosim

driver classes be present for 33,3%. The resulting capacities are 2879,

5796, 8715 and 11580 pcu/h for one, two, three and four lanes

respectively.

.

Equation 7.5

 68 Network Performance Degeneration in Dynamic Traffic Management

A21

A22

A31

A32

A41

B12

B22

B22´

B23

B32

B32´

C22

C22´

C32

C32´

D22

D22´

D32

D32´

E22

E32

7.3.3. Fosim runs and settings

Fosim is a stochastic model and multiple runs are needed to get some

certainty about capacity. The number of runs required is 24, assuming a

standard deviation of 250 pcu/h in the measured capacity and a

certainty of 95% that the actual capacity is within a range of ±100

pcu/h [Dijker & Knoppers (2004)].

Settings in Fosim were set at the default settings for driver behaviour,

including the lane change areas. Vehicle and driver composition are

equal to the link capacity runs with each of the three user classes at

33,3% and no trucks. The speed is set at 100 km/h as this is common

in the Netherlands at weaving sections. In order to retrieve information

from Fosim, two detectors are put into place. The detectors return 5-

minute averages of density, speed and flow. The first detector is

located 500m upstream of the weaving section. Some congestion does

not start at the actual weaving section but a bit upstream. This detector

can register this congestion. A second detector is located at the start of

the critical section. This detector measures flow able to enter the

weaving section. Flow is increased from zero to the maximum flow as

determined by Equation 7.5 in 90 minutes. After this, the maximum

demand is maintained for 30 minutes. If at any of the detectors average

speed over the lanes drops below 80 km/h, it is assumed that

congestion has started. The maximum 5-minute flow before this time at

detector two is taken as capacity. For each layout and for each demand

.

Table 7.2: Calibration demand

patterns for each layout.

In corner A, ψA equals 1; in corner C,

ψC equals 1 etc.

 69 Network Performance Degeneration in Dynamic Traffic Management

pattern, the capacities returned by the 24 runs are averaged. Average

standard deviation of capacity was found to be 266 pcu/h. 24 runs thus

seems about enough as a standard deviation of 250 was assumed.

7.3.4. Calibration

Prior to the actual calibration, a grid-search was performed over the

four input variables to be sure an absolute minimum of errors is found

instead of a local minimum. The comparison between Fosim and the

weaving model is done by flow reduction factors (f), which are one if

congestion is not found and between zero and one if capacity was

reached. Errors are defined as |fweave-ffosim|/ffosim, which is an absolute

relative error. Maximum error, average error and standard deviation are

multiplied with one another to create a single performance indicator.

This multiplication yields that an equal relative gain or loss of each

individual performance indicator is equally bad or good. Absolute

changes are filtered so that large absolute performance indicators do

not get the overhand. The grid is defined as in Equation 7.6. A few

coarse grid searches were performed to ensure a wide enough range.

{ }
{ }
{ }

{ }4500,4250,4000,3750,3500,3250,3000,2750,2500

1,9.0,8.0,7.0,6.0,5.0,4.0,3.0,2.0,1.0,0

0,1.0,2.0,3.0,4.0,5.0,6.0,7.0,8.0,9.0,1

0,2.0,4.0,6.0,8.0,1,2.1,4.1,6.1,8.1,2

∈

∈

−−−−−−−−−−∈

−−−−−−−−−−∈

peak

co

ta

lc

C

f

u

u

The minimum grid value for the combined performance indicator has:

Average error = 5,40%

Maximum error = 25,74%

Standard deviation = 5,25%

ulc = -1.0

uta = -0.2

fco = 0.7

Cpeak = 3750 pcu/h

Next, the weaving model was calibrated using a general minimization

function in Matlab (fminsearch) with the grid minimum as an initial

guess. The function feeds a set of variables in a ‘black box’ and receives

a single result. By changing the input, the function ‘reads’ the black box

and minimises the result. The black box here is actually a comparison

between the reduction factors from Fosim and the weaving model. The

comparison returns the combined performance indicator. The results of

the calibration are:

Average error = 5,50%

Maximum error = 24,03%

Standard deviation = 5,36%

ulc = -0,95

uta = -0.17

fco = 0.79

Cpeak = 3791 pcu/h

.

Equation 7.6

 70 Network Performance Degeneration in Dynamic Traffic Management

All parameters have the expected sign but peak capacity of 3791 pcu/h

may be observed to be rather high. The value can be made plausible by

the following reasons:

- Small gaps

Drivers allow small gaps at weaving sections, at least for a very

short period of time during lane changes by themselves or

surrounding vehicles.

- Complex process, simple model

The weaving process is a very complex process. The weaving

model tries to mimic this process using only four variables. It

may be expected that parameters will not have their actual

value as some excluded weaving complexity will pull on the

parameters. One particular excluded movement is any

movement from the critical lane before the location of the peak

demand. Would this be included, peak demand would be lower

and capacity could also be lower resulting in an equal reduction

factor.

- Peak capacity vs. average capacity

Regular lane capacity values in the range of 2000-2200 pcu/h

are derived with detectors at a fixed location. A small period of

time, for instance 5 minutes, is aggregated to derive the

average traffic state. From average values one cannot make

conclusions about the maximum allowable demand for a few

seconds. The latter is however exactly what the lane demand of

the weaving model is. The location of the peak demand will in

reality be variable as it relates to the specific locations where

vehicles are weaving at a particular time. If a detector would

continuously change its location to the peak demand, higher

capacity values would be found. These capacities would relate

to the accepted gaps as mentioned at the first bullet.

Performance is reasonable with a small average error and an acceptable

maximum error for a macroscopic model. The distribution of absolute

errors is skewed towards small errors and so the errors close to the

maximum error are rare, as the standard deviation also indicates. From

Table 7.3 can be learned that there are only nine errors larger than

20%. Six of these belong to layout B23 and B32. From the mean errors

per layout we can conclude that the more lanes a layout has, the less

accurate the model performs on average. This is logical as layouts with

more lanes also have more movements that are not explicitly accounted

for at the peak demand.

7
1

 N
e
tw
o
rk
 P
e
rfo
rm
a
n
ce
 D
e
g
e
n
e
ra
tio
n
 in
 D
y
n
a
m
ic T

ra
ffic M

a
n
a
g
e
m
e
n
t

Mean

-2,78

-5,12

-0,79

-3,74

-2,73

0,84

4,7

-0,56

7,59

7,69

0,46

-0,82

-3,87

3,68

-2,2

-0,33

-0,02

2,64

0,7

-5,48

-4,35

-7,79

-8,73

-5,63

-0,76

-11,10

0,00

-5,72

-3,75

-9,27

-3,05

0,00

0,00

-8,40

-4,94

-2,87

-9,84

0,00

0,00

-3,10

-2,26

-5,63

0,00

-12,80

0,00

-3,55

-7,04

-5,25

-3,90

-9,41

-0,80

-8,40

0,00

-6,01

-8,42

-0,14

-5,26

-11,05

-5,61

-4,28

-8,80

-3,05

-10,22

0,00

-17,25

4,98

-10,90

-12,82

-7,31

-16,29

-5,29

-9,94

-5,22

0,00

-3,76

-1,08

-8,67

1,48

-6,23

-9,18

-9,81

-11,67

-0,11

-17,83

0,00

-18,11

11,82

-23,37

-15,79

-5,15

-2,29

-15,21

-1,50

-1,81

3,18

6,76

-3,65

-8,11

-6,14

-2,96

0,23

-17,27

-24,03

-7,53

-5,57

1,99

7,54

-12,80

0,00

0,00

-3,17

0,00

-1,80

2,78

5,07

-6,05

12,72

-8,42

2,60

-6,50

9,00

0,00

-2,15

0,18

-5,13

-0,50

2,15

9,15

-6,65

0,00

0,00

0,04

0,00

0,00

4,94

5,84

-1,13

12,69

-4,83

2,95

-1,60

8,97

0,00

-2,80

0,88

-4,83

3,12

0,69

7,05

-10,87

0,00

0,00

2,40

0,41

-0,31

7,49

6,52

-2,09

12,65

3,21

6,32

-0,89

8,93

2,01

-3,33

-5,07

-4,17

-3,80

0,85

4,49

-3,20

0,00

-3,73

5,41

4,00

3,98

8,22

6,85

1,99

12,62

5,08

7,14

-2,49

8,90

8,47

-2,94

-2,67

-4,16

-10,15

1,02

-2,68

-3,95

-1,92

-0,46

7,07

-5,32

6,31

7,95

5,36

1,76

12,58

4,20

7,12

-5,83

8,87

12,57

-6,40

-4,87

-4,60

0,00

-6,50

0,00

-0,18

11,45

12,14

13,84

-3,64

-17,59

-12,03

6,73

-7,71

7,48

4,06

-1,29

-0,93

-7,14

0,00

-1,87

0,00

0,00

11,45

14,04

19,54

4,57

-6,15

-8,46

6,73

-7,13

6,94

4,25

-0,77

0,43

-2,48

0,00

1,78

0,00

0,00

11,45

15,15

21,85

8,69

0,12

-4,36

6,73

-5,63

5,22

0,62

-2,04

-2,45

-1,88

0,00

1,67

0,00

0,00

11,45

14,91

23,36

6,93

3,54

-3,57

6,73

-6,44

-1,40

-4,54

-5,67

-4,36

-1,63

-5,55

-2,59

-1,63

-3,58

-3,94

11,45

5,11

13,10

17,11

6,23

5,05

-2,89

6,73

-5,97

-12,67

-8,60

16,93

-8,40

-6,13

-7,21

0,00

-9,21

0,00

-24,03

0,00

5,50

17,06

-2,55

23,41

18,62

0,05

7,76

-6,70

17,32

0,62

7,59

11,20

21,76

8,69

10,81

16,60

0,00

-0,18

0,00

-12,15

0,00

5,89

15,57

-0,31

22,44

16,07

0,00

5,73

-4,93

14,22

-7,74

6,45

7,16

17,73

4,78

2,21

9,44

0,00

2,63

0,00

-0,25

0,00

5,39

12,88

0,00

20,55

13,37

0,00

2,34

-3,70

9,98

0,46

5,75

0,47

13,04

1,25

-3,75

3,12

0,00

-1,06

0,00

1,20

0,00

1,25

10,02

-0,16

17,39

10,48

0,00

1,55

-7,96

5,26

1,08

3,61

0,00

7,83

-4,09

-6,20

-6,90

0,00

-5,54

-0,75

-5,51

-0,85

-0,89

1,07

-2,34

13,92

2,79

-2,88

0,34

-13,86

-3,43

-5,53

2,57

-5,50

0,83

-7,03

-14,90

-14,22

-0,48

0,00

-1,05

0,00

-1,89

0,00

-13,38

0,00

-13,41

0,00

9,21

10,88

0,00

24,03

11,42

0,00

-2,50

-0,21

0,09

0,00

-7,77

8,18

13,46

0,58

-3,68

-1,65

0,00

-3,93

0,00

-3,92

0,00

0,55

2,27

0,00

10,97

2,84

0,00

-8,14

0,00

-8,08

0,00

-8,07

0,00

-1,42

-6,69

-8,08

-7,97

0,00

-8,04

0,00

-8,04

0,00

0,00

0,00

0,00

-7,88

0,00

0,00

-8,51

0,00

-8,48

0,00

-8,11

0,00

-8,19

-4,40

-8,06

-8,27

Relative error [%]

-2,31

-3,08

-0,25

-12,48

-2,65

-0,24

-9,05

0,21

-9,45

0,41

Layout

A21

A22

A31

A32

A41

B12

B22

B22'

B23

B32

B32'

C22

C22'

C32

C32'

D22

D22'

D32

D32'

E22

E32

.

T
a
b
le
 7
.3
: C
a
lib
ra
tio
n
 e
rro
rs

(n
o
n
 a
b
so
lu
te
) fo

r e
a
ch
 la
y
o
u
t

a
n
d
 d
e
m
a
n
d
 p
a
tte
rn
.

B
la
n
k
s a
re
 e
ith
e
r n
o
t a
 w
e
a
v
in
g

se
ctio

n
 (a
ll tra

ffic fro
m
 o
n
e
 a
n
d
 to

o
n
e
 lin
k
) o
r h
a
v
e
 th
e
 sa
m
e
 d
e
m
a
n
d

p
a
tte
rn
 a
s a
 p
re
v
io
u
s o
n
e
 a
s th

e
 ψ

C

ra
n
g
e
 is a

 sin
g
le
 v
a
lu
e
.

 72 Network Performance Degeneration in Dynamic Traffic Management

7.4 Conclusions

In this chapter a new weaving model has been presented based on a

new theory that focuses on lane demand and leaves the theory of

turbulence. A utility based demand distribution results in lane demands

at the start of the critical section. A peak demand is calculated by also

including a fraction of certain weaving movements. This results in a

very local and location variable peak demand that should not exceed

peak capacity. The resulting performance is reasonable.

The proposed model has some additional features. Merge and diverge

sections can be modelled by excluding a link. To deal with short

weaving section lengths, the logit scale factor (λ) can be increased. This

makes drivers more sensitive to the disutility elements. A calibration for

this has not been performed. The model can also cope with lane-

specific elements. For instance dedicated lanes for heavy vehicles can

be taken into account by introducing classes and defining different

utilities per class. Road marks can be accounted for by setting the

disutility of some movements to minus infinity. In short, the model is

very flexible and is easily adapted.

This chapter and the previous chapter have explained the new node

model while chapter 5 has explained the new link model. The next

chapter will evaluate the entire new model.

 73 Network Performance Degeneration in Dynamic Traffic Management

8. Evaluation

.

To evaluate all proposed changes from the previous three chapters, the

various sub models will be evaluated separately in terms of accuracy

and realism. Separate evaluations make it easier to distinguish

phenomena that are related to different models. The link model (CBQ)

will be evaluated in two ways. First, in section 8.1 a hypothetical

example will be given with a random pattern of link in- and outflow. It

is checked whether cumulative flows relate according to shockwave

theory. In the following, the various node models will be evaluated,

first qualitatively and than quantitatively by a comparison with VISSIM.

Networks with a single node and a few connecting links will be

evaluated by traffic state patterns. Section 8.3 will evaluate the

significance of the changes to EVAQ. The old and the new version of

EVAQ will be related to VISSIM results. In section 8.4, the entire model

performance in terms of CPU and memory will be evaluated. Section

8.5 will elaborate on the applicability of the new model after which

conclusions are presented.

8.1 Link model evaluation

To evaluate the link model and in particular CBQ, a link with the

following properties will be tested.

• Length: 2 km

• Capacity: 4000 pcu/h

• Lanes: 2

• Maximum speed: 100 km/h

• Saturation flow: 3000 pcu/h

With a time step of 20 seconds and a jam density of 150 pcu/km/lane,

it follows that there are 24 cells, the last of which is 40% of the usual

length. Congested shockwaves thus take 23.4 time steps to transverse

the link. Free flow shockwaves take 3.6 time steps, which is the free

flow travel time over the link. Three scenarios will be evaluated. The

first will cover free flow, the second will cover congestion and the last

scenario will cover a combination.

8.1.1. Scenario 1: Free flow

This scenario will show that free flow shock waves are modelled

correctly. To keep the link fully free flow, outflow will be equal to

potential outflow. Inflow will be a random fraction in the range [0 ...

0.7] of maximum inflow. The fraction is fixed for ten time steps. This

allows recognition of the waves. The maximum of 0,7 of the range is

useful for scenario 3 where the same randomly generated pattern will

be used. It balances capacity for inflow and saturation flow for outflow,

as capacity is higher than saturation flow. In Figure 8.1 it can be seen

that queue inflow coincides with link outflow. This is consistent with

the fact that there is no queue. The shockwaves are plotted from

 74 Network Performance Degeneration in Dynamic Traffic Management

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

C
u
m

u
la

ti
v
e
 f

lo
w

 [
p
c
u
]

Simulation step

Link inflow

Queue inflow

Link outflow

Shockwaves

0 10 20 30 40 50 60 70 80 90 100
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Q
u
e
u
e
 l
e
n
g
th

 /
 L

in
k
 l
e
n
g
th

F
lo

w
 /

 C
a
p
a
c
it
y

Simulation step

Maximum inflow / Capacity

Queue length / Link length

Potential outflow / Saturation flow

several queue inflow values towards link inflow (and outflow, but these

have no length). The time that the shockwaves span is calculated from

free flow shockwave speed and free flow distance, it is therefore not

surprising that indeed the shockwaves take 3,6 periods if there is no

queue. A validation can however be found in the slope of the

shockwaves. The value for link inflow is namely taken at time t–3,6

where the value should match cumulative queue inflow at time t. As

the free flow shockwaves are indeed horizontal, this is modelled

correctly. The second graph in Figure 8.1 shows that maximum inflow

is always equal to capacity. Potential outflow shows the random inflow

pattern delayed by 3.6 periods. Queue length is always zero.

8.1.2. Scenario 2: Congestion

This scenario will show that congested shockwaves are modelled

correctly. To create a congested link, inflow will be equal to maximum

inflow and outflow is a random fraction of potential outflow. Also here

each fraction is maintained for 10 steps to visualize the shockwaves. In

Figure 8.2 it can be seen that for a fully congested link, link inflow and

queue inflow do not perfectly coincide. This is because queue inflow

.

Figure 8.1: CBQ scenario 1

 75 Network Performance Degeneration in Dynamic Traffic Management

0 10 20 30 40 50 60 70 80 90 100
0

200

400

600

800

1000

1200

1400

C
u
m

u
la

ti
v
e
 f

lo
w

 [
p
c
u
]

Simulation step

Link inflow

Queue inflow

Link outflow

Shockwaves

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Q
u
e
u
e
 l
e
n
g
th

 /
 L

in
k
 l
e
n
g
th

F
lo

w
 /

 C
a
p
a
c
it
y

Simulation step

Maximum inflow / Capacity

Queue length / Link length

Potential outflow / Saturation flow

can only be determined from vehicles on the link. For a fully congested

link, vehicles that flow into the queue in a time step actually come from

other links. This creates small inconsistencies. Just as for free flow

shockwaves, the time that congested shockwaves span is calculated

from the queue length and the congested shockwave speed. Congested

shockwaves on fully congested links thus indeed span about 23,4

periods. Again the slope of the shockwaves functions as a validation

tool. All slopes are similar. Moreover, at this slope the pattern of link

outflow is repeated at link inflow. In the second graph of Figure 8.2 it

can be seen that potential outflow can be larger than saturation flow.

This is however only true when congestion has just started (queue is

short). Free flow vehicles than still play a role. It can also be seen that

even with long queues, potential outflow may be smaller than

saturation flow. The cause of this is queuing dynamics and resulting

densities together with speeds. Whenever the outflow pattern changes

value, some oscillation might be visible for the potential outflow. This is

because a new equilibrium flow needs to be found where the fraction

of potential outflow generates the same potential outflow for the next

time step. The effect quickly dampens out and is barely visible in the

.

Figure 8.2: CBQ scenario 2

 76 Network Performance Degeneration in Dynamic Traffic Management

cumulative flow. Maximum inflow shows the outflow pattern with a

delay, representing the congested shockwave accurately. Also inflow

will find an equilibrium value that is both dependant on itself and

outflow (with a delay). The queue quickly grows to almost the link

length. As queue inflow is derived from free flow vehicles, it cannot

reach full link length.

8.1.3. Scenario 3: Combined

This scenario is a combination of the previous two scenarios. Both

inflow and outflow are based on a pattern. The two patters are

different from one another, but equal as in the previous scenarios.

From Figure 8.3 it can be seen that inflow is the same as in scenario 1.

This is logical, as the queue never spans the entire link. Queue inflow is

shifted to the left and slightly morphed. This is consistent with the short

and variable queue length from the second graph in Figure 8.3. Link

outflow is shaped like a combination of outflow from the previous

scenarios. For short queue lengths the shape is more similar to scenario

1. For longer queue lengths the shape is more similar to scenario 2. This

is perfectly logical, as scenario 1 has no queue while scenario 2 does.

0 10 20 30 40 50 60 70 80 90 100
0

100

200

300

400

500

600

700

800

C
u
m

u
la

ti
v
e
 f

lo
w

 [
p
c
u
]

Simulation step

Link inflow

Queue inflow

Link outflow

Shockwaves

0 10 20 30 40 50 60 70 80 90 100
0

0.2

0.4

0.6

0.8

1

1.2

1.4

Q
u
e
u
e
 l
e
n
g
th

 /
 L

in
k
 l
e
n
g
th

F
lo

w
 /

 C
a
p
a
c
it
y

Simulation step

Maximum inflow / Capacity

Queue length / Link length

Potential outflow / Saturation flow

.

Figure 8.3: CBQ scenario 3

 77 Network Performance Degeneration in Dynamic Traffic Management

8.1.4. Sensitivity analysis

A sensitivity analysis was performed to analyse outcome sensitivity for

each input parameter. Capacity, saturation flow, maximum speed and

jam density are either increased or lowered. All but saturation flow

determine the shape of the fundamental diagram. The 3rd scenario is

used for a comparison. The eight resulting plots are shown in Figure

8.4. Outcome appears to be relatively insensitive to maximum speed

and jam density. As maximum speed defines density at capacity, it can

be concluded that outcome is rather insensitive to the density

dimension of the fundamental diagram. The model is sensitive to

capacity and saturation flow. Total flow appears linear with capacity as

a capacity of 5000 pcu generates about 5/3rd of flow with a capacity of

3000 pcu. Saturation flow is a factor determining outflow. A linear

relation can however not be found as outflow also depends on inflow.

Still it can be seen that higher saturation flow results in a significant

increase of outflow for congested circumstances.

Capacity = 3000 [pcu] Capacity = 5000 [pcu] Saturation flow = 2000 [pcu] Saturation flow = 4000 [pcu]

Maximum speed = 80 [km/h] Maximum speed = 120 [km/h] Jam density = 100 [pcu/km] Jam density = 200 [pcu/km]

8.1.5. Conclusions

CBQ is able to model both congested and free flow shockwaves in a

consistent manner. The effect of using the cell states for potential

outflows is valid as potential outflow is often smaller than saturation

flow during congestion. Saturation flow thus functions as an upper limit

of congested outflow. Outcome is sensitive to capacity and saturation

flow.

.

Figure 8.4: CBQ sensitivity

analysis

 78 Network Performance Degeneration in Dynamic Traffic Management

8.2 Node model evaluation

8.2.1. Controlled intersections

To evaluate the mechanism for controlled intersections a regular

intersection with four roads will be used as in Figure 8.5. The roads are

one kilometre long and have a maximum speed of 50 km/h. The north

and south road have one lane while the east and west road have two

lanes. Capacity equals 2000 pcu/h/lane and

saturation flow equals 1800 pcu/h/lane.

From the north and the south 1000 pcu will

leave evenly spread throughout an hour.

For the east and west this is 2000 pcu.

Outflow in the four directions is unlimited,

except for the west link where there is a

random limit of about 1/3rd of average

flow. At some point this will create spillback

for the central intersection. Split fractions at

the intersection are random for each time

step and evenly distributed (on average)

over all links. The turn lane layout can be seen in Figure 8.5. Outcome

of the model over an hour was exported into a movie from which

qualitative observations can be made. The movie displays the traffic

states of the cells, not the traffic itself. The following observations were

made:

Shockwaves

1. Free flow traffic states move downstream with relatively high

and constant speed.

2. Congested traffic states move upstream with a relatively slow

and constant speed.

Traffic state patterns

3. The east and west link have very similar traffic states moving

upstream. This is logical as these roads have most traffic and

are thus usually both part of the critical conflict group at the

intersection. Their reduction factors are thus equal.

4. The north and south link have more or less similar traffic states

moving upstream. Usually all four links are part of the critical

conflict group, but sometimes either the north or the south link

is not. Reduction factors are than unequal.

5. The fact that the links show similar patterns despite random

split fractions shows that the intersection control is optimal and

distributes disturbance evenly over the critical conflict group.

The total flow over an hour is practically equal for the north link

and south link. The same holds for the east link and west link.

Congestion and spillback

6. The intersection limits flow from all links as congestion start at

all links as soon as traffic reaches the intersection. After this

congestion continues to increase.

.

Figure 8.5: Controlled

intersection

 79 Network Performance Degeneration in Dynamic Traffic Management

7. Congestion builds up from the west link towards the central

intersection. Congested traffic states move upstream.

8. As soon as the congestion on the west link reaches the central

intersection, congested traffic states on all links are very similar.

This is due to the fact that the limit of spillback is dominant.

Shockwaves from the west link travel over the intersection and

on to all upstream links.

Controlled intersections behave as expected. Both free flow and

congested traffic waves move according to shockwave theory. The

amount of similarity between links in congested traffic states coincides

with the change of being part of the critical conflict group. Traffic

states move over the intersection as soon as spillback starts.

8.2.2. Uncontrolled and priority intersections

An equal approach as for controlled intersections was performed for

uncontrolled intersections. Two movies were generated, one where the

east and west roads have priority and one where there is no special

priority rule, see Figure 8.6.

The following observations were made:

1. The shockwaves and congestion and spillback observations

from controlled intersections also hold for uncontrolled and

priority intersections.

2. All links show dissimilar traffic states. Limits on capacity are

thus link specific.

Without priority for the east and west roads:

3. The north and south link have lower density, higher speeds and

shorter queues. This is strongly related to the size of the flows

and the turn lane layout and is thus not a general property of

uncontrolled intersections.

4. As soon as spillback occurs, the south link has more capacity

than the north link and the west link has more capacity than

the east link. As flow towards the west reduces, so does its

impact on total flow. The other links, for which the south and

west link have more priority than their counterparts, thus

.

Figure 8.6: Uncontrolled and

priority intersections

 80 Network Performance Degeneration in Dynamic Traffic Management

increase in their influence. In other words, the north and east

link are unable to fully utilize their priority as their priority is

largely towards the congested west link.

With priority for the east and west roads:

5. A similar phenomenon to observation 4 exists for the priority

intersection. Since priorities are different, so is the size of the

effect for the north/south and east/west combinations.

6. The east and west links have low densities and shorter queues

while the north and south link have very high densities and

longer queues. This is completely in line with the priority rule

and the resulting capacities from the links.

Uncontrolled and priority intersection behave as expected. The amount

of congestion coincides with the amount of priority. The impact of

spillback and priority towards the link that produces spillback is logical.

Links that rely on this priority for their outflow capacity show more

degeneration.

8.2.3. Roundabouts

The same framework is again used for the evaluation of roundabouts. A

2-lane roundabout and a turbo roundabout were evaluated. The turbo

roundabout was designed for more flow from the east and the west.

This is displayed in Figure 8.7.

1. The shockwaves and congestion and spillback observations

from controlled intersections also hold for roundabouts.

2. All links show dissimilar traffic states. Limits on capacity are

thus link specific, this is similar as for uncontrolled and priority

intersections.

2-lane roundabout:

3. Traffic states on all links, although different, are all within a

small range. This is dependant on the demand pattern which in

this case more or less coincides with the capacity pattern.

.

Figure 8.7: 2-lane and turbo

roundabout

 81 Network Performance Degeneration in Dynamic Traffic Management

Turbo roundabout:

4. Densities on the east and west link are lower even though the

demand is twice as high. Capacity is thus more than twice as

high. This is in line with the design of the turbo roundabout.

Roundabouts show expected traffic states. The effect of a turbo

roundabout with respect to a 2-lane roundabout follows the design as

traffic from the west and east has less degeneration.

8.2.4. Weaving sections

A calibration for weaving sections has already been discussed in section

7.3. The interaction with CBQ however has not been covered yet. For

weaving sections a new framework is used. Figure 8.8 shows the used

layouts. Demand is shown and split fractions are again random but

follow the displayed outflow demand on average. Roads are again one

kilometre long and have a maximum speed of 100 km/h. The capacity

is 2000 pcu/h/lane and saturation flow is 1500 pcu/h/lane.

1. The shockwaves and congestion and spillback observations

from controlled intersections also hold for weaving sections.

The link with spillback is however either the off-ramp or the

highway itself for the merge section. Despite the under

saturated condition of the links, all layouts have congestion at

the weaving section before there is spillback. Even the off-

ramp, which is an additional lane, creates congestion. The

amount of congestion is however less.

2. For both the on-ramp and the weaving section, both entering

links are affected equally. This is consistent as the links have

equal demand and capacity.

All layouts show congestion as predicted by the weaving model based

on lane choice. Impact on the links is equal as assumed in the weaving

model.

.

Figure 8.8: Weaving sections
3000

3000

3000

3000

4000

4000

2000

6000

1333

2667

 82 Network Performance Degeneration in Dynamic Traffic Management

8.2.5. A comparison with VISSIM

Each of the nodes as in the previous sections is modelled using VISSIM.

VISSIM is a microscopic model that takes many details into account. It

forms a good benchmark for model outcome. External spillback is

excluded as the node capacity and the resulting queue length are of

interest. Default settings and intersection definitions in terms of links,

connectors and priorities were defined as indicated by the user manual

(VISSIM 5.10 User Manual). The simulation period is one hour. Each

node type is modelled in 30 runs to even out stochastic dispersion.

Table 8.1 shows the average resulting link outflow capacities of both

EVAQ and VISSIM. Also the errors are given.

 Link
Con-

trolled

Uncon-

trolled
Priority

2-lane

round.

Turbo

round.
Weave

On-

ramp

Off-

ramp

EVAQ

1 714 971 376 460 483 2192 1981 2924

2 1016 1370 1862 935 1225 2192 1981

3 673 975 377 458 482

4 1054 1517 1835 931 1228

All 3456 4834 4450 2784 3418 4384 3962 2924

VISSIM

1 496 851 480 522 394 2619 2926 3856

2 999 1091 1967 1094 1094 2208 1316

3 507 850 512 505 387

4 954 1496 1969 994 1280

All 2957 4287 4929 3115 3155 4826 4242 3856

Errors

1 44% 14% -22% -12% 23% -16% -32% -24%

2 2% 26% -5% -14% 12% -1% 51%

3 33% 15% -26% -9% 24%

4 10% 1% -7% -6% -4%

All 17% 13% -10% -11% 8% -9% -7% -24%

Generally the total node capacity is modelled with reasonable precision.

The off-ramp is modelled worst with an error of 24%, which is in line

with the error range of the weaving model. Larger errors can be found

for the specific link outflows. Large errors are found for the on-ramp.

This largely follows from the assumption that any reduction in the

weaving model applies equally on both entering links. In VISSIM the

main highway is affected less than the on-ramp. This follows from

priority-like behaviour at the merge taper. It should be noted that such

merging behaviour is difficult for microscopic models such as VISSIM

and may not be a very good benchmark. Large errors are also found for

the controlled intersection at links 1 and 3. These links have 1 lane that

may cause larger reductions of saturation flow than the used

representative value of 1300 pcu/h. This can be assumed from the fact

that shared turn lanes with two directions have larger reductions than

for only a single left or right turn. Turn lanes with three directions

probably have larger reductions. Statements about smaller errors are

difficult to make as VISSIM is also (just) a model. In other words,

.

Table 8.1: Link outflow

capacities from EVAQ and

VISSIM [pcu/h (including link

travel time)]

 83 Network Performance Degeneration in Dynamic Traffic Management

different models will always have different results and more certainty

can only be acquired using actual data from reality.

Appendix C holds plots that display the queue length through time for

all links of the various nodes. Generally the queue lengths are correct.

Slight differences between EVAQ and VISSIM are visible at the slope of

the plots (queue length growth). These differences can be explained by

the errors from Table 8.1. An over estimation of capacity entails a more

flat slope (smaller queue) while an under estimation entails a more

steep slope (larger queue). Besides the differences in slope, a few plots

appear to have rather different patterns. For these plots can be seen

that the existence of a queue in itself is uncertain. Either EVAQ or

VISSIM hardly shows any queue while the other model will show a

queue that grows slowly on average. The growth of these queues is in

the order of 100-200 pcu/h. Such a difference can easily follow from

slight capacity differences. A last observation is that especially for the

off-ramp scenario, queue length never fully reaches link length. This is

correct as the link model calculates queue inflow from the current free

flow vehicles on the link. In other words, for any equilibrium of flow

through a queue, a certain free flow section is required that can provide

this flow each time step. The length of this free flow section is

dependent on the free flow speed, the equilibrium flow and the time

step size. As flow through the queue (per lane) and maximum speed

are relatively high for the off-ramp scenario, the free flow section

required to represent a fully congested link is somewhat long. Spillback

will however be modelled correctly as this free flow section represents

the maximum queue inflow. It can thus be concluded that given correct

constraints by the node model, CBQ is very well able to model the

queue correctly.

8.3 New versus old EVAQ outcome

In the previous sections it was shown that the new link and node model

show correct behaviour but at the cost of additional calculation time. In

order to accept additional calculation time, the behaviour should

deviate significantly from the previous version of EVAQ. To analyse the

changes all networks from section 8.2 are run through various model

versions:

• Old EVAQ

• Old EVAQ with new link model

• Old EVAQ with new node model

• New EVAQ (performed in section 8.2)

• VISSIM (performed in section 8.2)

8.3.1. Queue lengths comparison

Changes are analysed by the queue length, as it is the result of both

the link and the node model. In this paragraph a visual comparison is

given for one link and a quantitative comparison is given for all links.

The visual comparison can be seen in Figure 8.9. It shows the queue

length through time of 30 runs from the 4th link of the uncontrolled

intersection. For this link the capacity error of the node model is 1%

allowing a good comparison also of the link model with the VISSIM

 84 Network Performance Degeneration in Dynamic Traffic Management

result. The black line is the average queue length of the 30 runs. The

smooth flattening of the average queue length follows from more and

more queue lengths that have reached link length. It is not an expected

shape of a single queue growth.

 (A) Old EVAQ (B) With new link model

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

 (D) New EVAQ (E) VISSIM

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

From Figure 8.9 (A) and (B) it follows that CBQ produces slightly longer

queues which follows from lower densities that are related to congested

flow via a fundamental diagram. These densities are always lower or

equal to jam density, which the old model uses. Longer queues are also

found between (C) and (D). From Figure 8.9 (A) and (C) it follows that

the new node model significantly reduces outflow, as queues are much

longer with equal density. Finally, from Figure 8.9 (B), (C), (D) and (E)

we can see that both the new node model and the new link model are

needed to produce results similar to VISSIM. It can thus be concluded

that both sub models significantly contribute to the results.

To compare the queue length quantitatively, only the average queue

length of the 30 runs is used. The queue length grows up to the length

of the link for many links and for various model versions. Assessing the

queue length after the modelled hour is thus useless. Instead, for each

link and for each model version the maximum five-minute queue

growth is taken. The five minutes may be between any two time steps

and not only at 0, 5, 10, 15, etc. minutes. Table 8.2 lists the queue

growth for all models. Also the absolute relative and absolute errors are

given.

.

Figure 8.9: Queue length [m]

through time [min] as

determined by several model

versions

(C) With new node model

0 20 40 60
0

500

1000

 85 Network Performance Degeneration in Dynamic Traffic Management

Model/version: Old EVAQ Old + link model Old + node model New EVAQ VISSIM

Link number: 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

Maximum 5 minute queue length growth [m]

controlled 24 24 24 24 39 39 39 39 204 335 209 338 270 393 286 395 445 533 446 480

uncontrolled 25 25 25 25 42 42 42 42 32 192 19 167 60 281 49 236 220 430 291 347

priority 23 23 23 23 40 40 40 40 400 65 393 73 464 131 452 134 464 5 419 5

roundabout 24 24 24 24 40 40 40 40 349 348 351 338 436 433 438 433 465 453 476 491

turbo round. 23 23 23 23 45 45 45 45 335 262 348 249 426 328 421 344 531 483 526 462

weave 925 925 878 878 240 240 524 524 337 778

on ramp 925 925 878 878 309 309 570 570 80 418

N
o
d
e
 t
y
p
e

off ramp 1005 1005 100 505 692

Average/VISSIM: 207 / 50% 214 / 52% 248 / 60% 364 / 89% 411

Absolute error with VISSIM [m]

controlled 421 509 422 456 405 494 407 441 240 198 237 142 175 140 160 85

uncontrolled 195 405 266 322 178 389 249 305 187 238 272 180 160 149 242 111

priority 441 18 396 19 424 35 379 36 65 59 26 69 0 126 33 130

roundabout 441 429 452 467 425 414 436 451 116 105 125 153 29 21 38 59

turbo round. 509 460 504 439 486 437 481 416 196 220 178 213 106 154 106 118

weave 588 147 541 100 97 538 187 254

on ramp 845 507 798 460 228 109 489 151

N
o
d
e
 t
y
p
e

off ramp 313 313 591 187

Average: 399 380 191 136

Absolute relative error with VISSIM [-]

controlled 0,9 1,0 0,9 1,0 0,9 0,9 0,9 0,9 0,5 0,4 0,5 0,3 0,4 0,3 0,4 0,2

uncontrolled 0,9 0,9 0,9 0,9 0,8 0,9 0,9 0,9 0,9 0,6 0,9 0,5 0,7 0,3 0,8 0,3

priority 0,9 3,3 0,9 4,0 0,9 6,4 0,9 7,7 0,1 11,0 0,1 14,9 0,0 23,3 0,1 28,0

roundabout 0,9 0,9 0,9 1,0 0,9 0,9 0,9 0,9 0,2 0,2 0,3 0,3 0,1 0,0 0,1 0,1

turbo round. 1,0 1,0 1,0 1,0 0,9 0,9 0,9 0,9 0,4 0,5 0,3 0,5 0,2 0,3 0,2 0,3

weave 1,7 0,2 1,6 0,1 0,3 0,7 0,6 0,3

on ramp 10,5 1,2 9,9 1,1 2,8 0,3 6,1 0,4

N
o
d
e
 t
y
p
e

off ramp 0,5 0,5 0,9 0,3

Average: 1,54 1,74 1,53 2,55

A general tendency is visible throughout the table. The link model

alone forms only a slight improvement towards the VISSIM results. The

node model alone performs much better but still does not resemble the

VISSIM results. The new EVAQ model is a significant improvement

relative to the other EVAQ versions. It should be noted that the

average absolute relative error is worse, but dominated by only two

links of the priority node that do not actually show large absolute

errors. In short it can be concluded that the old EVAQ model has queue

growth that is on average about 50% of the VISSIM queue growth.

The new EVAQ model is a significant improvement with queue growth

that is on average about 89% of the VISSIM queue growth.

.

Table 8.2: Queue length

growth of the old and new

EVAQ and VISSIM

Absolute error:

| EVAQ – VISSIM |

Absolute relative

error:

| EVAQ – VISSIM |

VISSIM

 86 Network Performance Degeneration in Dynamic Traffic Management

8.3.2. Macroscopic Fundamental Diagram comparison

On link level the new model performs significantly different from the

old model. Interesting also is to look at the network wide MFD again as

in section 3.3. The same MFD’s, but generated by the new model, are

given in Figure 8.10 below the MFD’s of the old model.

Old: C9-10 = 6000 pcu/h Old: C9-10 = 2000 pcu/h

New: C9-10 = 6000 pcu/h New: C9-10 = 2000 pcu/h

In the new situation there is a much lower peak flow throughout the

network. This follows from node constraints that are more limiting than

link inflow. Also the situation where the exit link has a capacity of 6000

pcu/h shows significant NPD while this is not true for the old situation.

Despite different exit link capacities, both new MFD’s look very alike.

Again this follows from node constraints that are more limiting but also

the same. The new model still displays ranges where the accumulation

changes but the flow remains perfectly equal. In the network filling

phase this is however much less. The remaining horizontal parts in the

filling phase can be explained as being an equilibrium state of outflow

and route choice. The network depleting phase still shows large

horizontal ranges. Just as with the old model this follows from links that

go from being queued to being empty. The new MFD’s still follow a

cycle that is dissimilar from the MFD derived by Daganzo & Geroliminis

(2008). Qian (2009) however explains that this coincides with the used

modelling framework where density and flow are taken from different

locations.

.

Figure 8.10: Old versus new

macroscopic fundamental

diagrams

 87 Network Performance Degeneration in Dynamic Traffic Management

8.4 New versus old EVAQ performance

Both the new link model and the new node model have additional steps

in relation with the old model. The cell based representation of queuing

and the constraints at the node are the main additional steps. Logically

it follows that additional calculation time is needed. During the

implementation of the new model into the old model, evaluations were

done to optimise the speed of the code. Some code from modules that

were not functionally changed appeared highly inefficient. The most

significant involved the repetition of a large matrix in order to have

equal size in the expanded dimension to another matrix. Instead of

actually expanding the matrix, smart indexing is much more efficient

and has been implemented. This code is part of the split fraction

generation. Both old and new code has been optimised in order to

prevent such needles inefficiencies. Because of this the new model

might not take as long as one would expect. Table 8.3 shows

calculation time for several types of evacuations for 1000 time steps on

a Dual Pentium 1,79 Ghz with 1,99 Gb of memory running on

Windows XP. The network has 145 links and 61 nodes, 14 of which are

modelled to have conflicts in the new node model. Other nodes are

origins, destinations or merely a manner to connect an origin to a road

with a single connector while there are many small intersections in

reality. The voluntary evacuation has one class while recommended and

mandatory evacuations have 23 classes. It can be seen that for the old

model the split fractions are most significant in terms of calculation

time, but the matrix expansion is only needed for recommended

evacuations. In the new model this takes much less time but the new

node and link models also have significant calculation time. The

increase in calculation time is 123%, 36% and 742% for voluntary,

recommended and mandatory evacuations respectively. Recommended

evacuations take the longest. For these the increase in calculation time

is very reasonable. Memory use has also increased mainly due to

additional time steps needed in memory for CBQ.

 Module time [s]

Model Evacuation Memory

[Mb]

EVAQ Route

set

Split

fractions

Node LCM CBQ

 Voluntary 26 24 4 2

Old Recommended 174 87 4 70

 Mandatory 173 13

 Voluntary 28 55 4 3 25 7 21

New Recommended 243 118 5 33 30 7 46

 Mandatory 242 108 30 8 75

.

Table 8.3: Performance for

1000 steps

 88 Network Performance Degeneration in Dynamic Traffic Management

8.5 Applicability of the new EVAQ model

8.5.1. Dynamic Network Loading model

The DNL model was adapted and tested within EVAQ. Attention was

paid to the special circumstances that evacuations create. The resulting

DNL model is however a module of EVAQ that could easily be used in

any other DTA model. A common assumption is that of capacity

conditions. This assumption is equally valid for normal circumstances.

The capacity condition itself may however need a different definition in

terms if link capacity, saturation flow, conflict group capacity, average

headway between following vehicles, minimum gap acceptance etc.

The mechanism of human behaviour will not be different between

evacuations and normal circumstances.

8.5.2. Reversed engineering

A merit concerning evacuations is that the new DNL focuses on actual

phenomena such as lane choices and vehicle interaction. The model

could thus function as a reversed engineering tool to evaluate where

most friction is present and where measures would be effective to

decrease evacuation time. Turn movements could be prohibited,

possibly taking away all friction on an intersection. Of course this

comes at the cost of having less route possibilities. Also for regular

conditions there are reversed engineering opportunities. The weaving

model for example clearly shows that the main cause of a lower

capacity is inefficient lane choice behaviour. If drivers could somehow

be stimulated to avoid the critical lane well before the weaving section

and before congestion actually starts, capacity could be significantly

increased. Without it there is also a stimulus to change lanes as the

critical lane will be over saturated but this is, by the definition of the

stimulus, too late. Besides functioning as a model component, the

weaving model is also able to estimate capacity for design purposes.

The turbo roundabout model shows the cause of increased capacity

with respect to a 2-lane roundabout with more detail than just ‘less

conflict points’. For specific lanes it is made explicit where the capacity

increase comes from.

8.5.3. Additional input

The newly introduced precision of EVAQ requires more detailed input.

The network must resemble the actual network where nodes are actual

intersections. Often for macroscopic models, a single node may

represent a cluster of intersections. For example intersections that are

simply rather close to one another or a complete highway junction.

Such nodes cannot be modelled correctly, as the assumed interaction is

unrealistic. It is however possible to define such nodes as type ‘none’.

Interaction will then not be taken into account. This at least provides

access to CBQ for such networks. Clearly it would be better to define

the network in line with reality. Besides the obvious consequences of

additional computation time due to the additional links and nodes,

there is also a problem that these situations often have short links. As

explained in section 5.1.3, short links are now possible. The node

model requires data about the nodes to analyse the conflicts. The input

 89 Network Performance Degeneration in Dynamic Traffic Management

required is difficult to generate by hand as there may be many conflicts

that need to be defined in one or several small matrices. It is easy to

confuse which row and column or even additional dimensions represent

a given conflict. To generate the node input a utility was developed

that is described in appendix B. It allows graphical and semi-automatic

generation of the input. Additional input for the entire model is listed in

Table 8.4.

Element/Component Input/Parameter

Network-wide

Links Jam density per lane (kjam)

Controlled intersections Conflict capacity (Cconflict)

Uncontrolled & priority intersections Minimum gap acceptance (tcritical)

 Average headway (h)

Roundabout Alpha curve

 Beta for 1 and 2 lanes

 Gamma for 1 and 2 lanes

Weave model Lane change utility (ulc)

 Taper utility (uta)

 Weaving fraction at peak (fco)

 Peak capacity (Cpeak)

Link model

All links Saturation flow (qsat)

Node model

None Turn matrix [optional]

Controlled intersections Lane map per link

Uncontrolled & priority intersections Lane map per link

 Priority (yes/no) per link

Roundabouts Type (1-lane/2-lane/Turbo)

 1-lane & 2-lane roundabouts Pseudo conflict distance per link

 Number of lanes (at the node) per link

 Turbo Pseudo conflict distance per lane

 Layout drawing

Weaving sections Merge taper (yes/no)

 Diverge taper (yes/no)

8.5.4. Permitted conflicts

The node model was designed for several types of intersections. In

reality more complex intersections may be found. A rather common

intersection type is controlled intersections with permitted conflicts.

Usually such conflicts are only found for small flows. They can be

modelled either as controlled (not permitted) or not existent. The first

has consequences for the assumed number of green phases while the

latter takes away a turn possibility.

.

Table 8.4: Additional input

 90 Network Performance Degeneration in Dynamic Traffic Management

8.6 Conclusions

This chapter has evaluated several aspects of the new EVAQ model.

Section 8.1 has shown that the shockwave theory is correctly

implemented in CBQ. Behaviour is as expected. Section 8.2 showed

similar results for the various node sub model where link outflows had

expected proportional or skewed patterns. Outflow capacities were

within a reasonable margin of error. The new model is a significant

improvement compared to the old model. Capacities and queue lengths

resemble VISSIM data much closer. The two derived MFD’s of the new

model show much more resemblance with each other, suggesting a

single MFD for the given network. Daganzo & Geroliminis (2008)

theorized this as being a property of networks. Their shape of the MFD

is however different.

The improvements of EVAQ come at the cost of additional CPU time

and memory use. For the most critical scenario, voluntary evacuations,

the gain is reasonable with 36% additional calculation time. Other

scenarios show large relative gains in calculation time, but the gain is

reasonable in absolute terms.

The DNL of the new model can be used in other DTA models. It also

provides a good basis for reversed engineering as the DNL is theory

based and relies on realistic network. The added precision does

however require additional input. The node input, error prone if

manually given, can be given with a semi automated graphical utility.

 91 Network Performance Degeneration in Dynamic Traffic Management

9. Conclusions & recommendations

.

9.1 Conclusions

The research questions from the introduction can be answered using

the findings of this research. The research questions of phase one have

been answered in chapter 3. For completeness the answers are given

again. The research questions of phase two will also be answered. The

research objective is revisited. From the answers to the research

questions it may be concluded that the objective has been reached.

9.1.1. Phase one

What processes influence network performance degeneration?

These processes are discussed in section 3.1 and are flow decrease with

density increase (fundamental link diagram), capacity drop for

congested traffic, spillback and gridlock. All these processes originate

from congestion. From section 3.4.2 it may also be concluded that

capacity constraints of both the links and the nodes can trigger

congestion.

What processes are explicitly modelled in EVAQ?

From chapter 2 it follows that the node model has two causes for

congestion that both relate to the maximum link inflow. Either the link

capacity is exceeded or the link is fully congested. Congestion is thus

explicitly triggered and spillback is explicitly modelled.

What processes are not explicitly modelled, but are an effective part of

EVAQ?

Related to spillback, gridlock is also an effective part of EVAQ. It has

been shown in section 3.3 that the single reduction factor enables

blocking cycles.

What processes need to be included in order to achieve better

accuracy?

Remaining processes that are not covered by EVAQ are flow decrease

with density increase, capacity drop and capacity constraints of

intersections.

9.1.2. Phase two

What solutions can be created to include additional processes?

Chapter 4 has mentioned several ideas to include the remaining

processes. Solutions were:

• Using an average congested state

• Directly implement a fundamental diagram

• Cell Based Queuing

• Congested outflow limits

• Additional constraints in the node model

 92 Network Performance Degeneration in Dynamic Traffic Management

The last three have been selected on the basis of realism and with a

preference for theory based models.

What assumptions need to be made for these solutions?

Are these assumptions more realistic considering network performance

degeneration than the assumptions they avoid?

A comparative overview of assumptions of the old and new model is

given in Table 9.1. The new assumptions are more realistic.

 Old EVAQ New EVAQ

Maximum link inflow

limit

Capacity & remaining

storage.

Id. Remaining storage is however dependent

on queuing behaviour.

Potential link outflow

limit

Capacity. Capacity for free flow. For congestion it is

dependant on speeds through the queue.

Queuing behaviour At a fixed jam density. Kinematic shockwaves initiated by outflow.

Traffic states are deduced via a triangular

fundamental link diagram. Speed in the first

cell is determined by saturation flow.

Spillback Single reduction factor. Id. Reduction factor is however dependant on

maximum link inflow.

Lane choice behaviour Not significant. Equal lane flows. Shared lanes with higher

flow are not used.

Controlled intersections Not significant. Shared use of conflict space with an effective

capacity of 1300 pcu/h.

Uncontrolled & priority

intersections

Not significant. Minor capacity dependant on the sum of

major flows.

Roundabouts Not significant. Entrance capacity dependant on conflict and

pseudo conflict. The same model can be used

for turbo roundabouts at lane level.

Weaving sections Not significant. Peak demand determined by movement

utilities assuming saturated conditions.

It should be mentioned that most sub models are based on existing

models and formulas for regular conditions while EVAQ is about

evacuation conditions. It is difficult to determine into what extend

parameters will change. A good example is for instance gap

acceptance. It may be expected that drivers care less about forcing

vehicles with priority to decelerate.

Are the processes indeed significant for network performance

degeneration?

Section 8.3 has shown that both the new link and node model

contribute significantly to results that are closer to VISSIM results. The

capacities and queues show much more NPD in the new MFD’s. The

included processes are thus indeed significant for NPD.

What are the consequences of the solutions on calculation time and

memory use?

Both increase as more detail is taken into account. The critical scenario,

voluntary evacuations, has an increase of 36% in calculation time.

Memory use has increased similarly. EVAQ is still reasonably fast and

.

Table 9.1: Old and new

assumptions

 93 Network Performance Degeneration in Dynamic Traffic Management

given the increase in realism, the additional calculation time can be

justified.

9.1.3. Research objective

Below the research objective from the introduction is given.

The research objective has been reached. The new EVAQ model is more

detailed and has a higher level of accuracy. The new DNL is theory

based enabling a better assessment of evacuation plans. A new

weaving model and theory is also introduced. As the new DNL relies on

realistic networks with nodes representing actual intersections it is

possible to apply reversed engineering to optimise evacuation

measures. The DNL is also applicable in other DTA models enabling the

same benefits for regular circumstances. The higher level of detail

requires additional input that can be graphically given for the nodes.

Calculation time and memory use have increased with about 1/3rd. This

is justified by the increased accuracy.

9.2 Recommendations

The recommendations are divided into two sections. The first section

focuses on the theory side of traffic modelling whereas the second

section focuses on the implementation. The traffic modelling

recommendations will focus on further research, further development

of the new DNL model and further development of other EVAQ

components. The recommendations regarding the implementation

focus on the code structure of EVAQ and further development of the

Node Input Generator.

9.2.1. Modelling recommendations

Further research regarding assumptions

From section 8.2 it follows that the DNL model produces good results.

Some link specific capacities however show large errors. Additionally it

should be mentioned that not all details of the model were extensively

researched. For the following assumptions it is recommended that

further research will be performed:

• Fixed saturation flow

Saturation flow is given per link and fixed. Whether saturation

flow is fixed has not been proven. It may well be that at a

highway the congestion discharge rate is different if the queue

drives at 10 or 60 km/h.

• No influence of waiting areas at intersections

Uncontrolled and priority intersections often have a waiting

area in the centre. These are assumed to not influence capacity,

as vehicles might also have to wait for this area to clear. They

are constructed to allow easier intersection crossing but

according to the exponential minor capacity formula, major

.

Research objective
To develop modelling solutions that correctly include processes that

contribute to network performance degeneration in order to

improve the accuracy of EVAQ and other DTA models.

 94 Network Performance Degeneration in Dynamic Traffic Management

flows can simply be added and any area in between is not of

influence. Note that this may only hold if the flow is critical as

the waiting area itself is than often occupied.

• No spillback bias due to turn lane layout

Turn lanes are assumed to have no length. In reality they

obviously have length that is used as a buffer during the red

phases. Explicit red and green phases are ignored and averaged;

turn lanes do not have to function as a buffer. Turn lanes can

however differentiate spillback for different turn flows from the

same link. It is not expected that this is significant as turn lanes

are quickly filled if spillback has any significance. This has

however not been shown.

• First order turn lane choice

In urban networks the assumption that drivers divide equally

over available turn lanes will often not hold. Second order

elements such as downstream intersections and lane reductions

will influence the preference of drivers. In under saturated

conditions such behaviour is very real. What exactly the

aggregated result is at saturated conditions is unknown. It

might be that a bias exists but that the bias is small enough to

allow enough drivers to use the less attractive turn lane. FIFO

will than not hold but conflicts at the intersection are modelled

with correct partial flows. It should be investigated how

significant the second order influences are.

Further development of the DNL model

Besides investigating the validity of assumptions, it is also important to

look at opportunities to further improve the DNL model.

• Further development of the weaving model using real data

The weaving model has been calibrated to data from the

microscopic model FOSIM. It is recommended to enrich the

model using real data. This can especially be useful to recognize

lane choice and lane change behaviour. This would require

number plate data or similar data with other detection

technologies. Detector data alone will not be as useful. It is also

recommended to research the influence of weaving section

length and if the logit scale factor can be used to capture this

effect.

• Reduction bias at weaving sections

Some link specific capacities from the node model are a fairly

large under or over estimation. These are found for weaving

sections and controlled intersection. The errors at weaving

sections mainly follow from a single reduction on both merging

roads. In reality there is often a bias in the influence as non-

critical lanes can be utilized into different extents. Links to

weaving sections can easily be the bottleneck for an entire

region. A capacity error of 40% is than very undesirable. It is

recommended that the weaving model is extended with an

effect bias module. The bias may for instance be determined

differently if the critical lane is directly downstream of the road

or not. Also a mechanism for lane interaction could be

determined. Finally it is recognized that merging tapers or clear

 95 Network Performance Degeneration in Dynamic Traffic Management

on-ramps (rather than highway merges) result in different

driver behaviour.

• Turn lane specific reduction factors for controlled intersections

For controlled intersections large errors are made for some but

not all links. In the Syllabus CT4822 many turn lane specific

reduction factors are given that may significantly reduce

saturation flow. It is recommended that the controlled

intersection model will be extended with the detail of turn lane

specific reductions. These reductions should not actually reduce

capacity, but virtually increase the flow as multiple flows are

subject to a single conflict capacity. The end effect is obviously

the same. Most detailed reductions can be determined once

prior to the model run. For shared lanes the reduction is

dependent on demand and should thus be calculated for each

time step. The total additional calculation time will be very

minor.

• Permitted conflicts

Controlled intersections often have permitted conflicts,

including the U-turns. U-turns are currently only covered by

maximum link inflow. Other permitted conflicts are either

modelled as a non-permitted conflict or they are excluded all

together. It is recommended that an investigation is performed

into the influence of permitted conflicts and that any significant

mechanisms are included in the controlled intersection model.

Further development of EVAQ

Changes to EVAQ that have been implemented in this research focus

on the DNL module. The improved DNL both enables and relies on

further development of other EVAQ modules. The results of EVAQ will

only be as good as the least accurate module of EVAQ. Therefore the

quality of evacuation plans may rely more on other modules. Other

modules should thus be further developed, or at least be investigated

for their accuracy. Researchers can rely on a more accurate DNL while

further developing EVAQ.

Implications for findings using the old model

Estimations for evacuation time and the number of casualties of the old

model will generally be too positive. This research has resulted in lower

capacities at nodes. This logically results in longer queues. Additionally,

queues are even longer as densities are lower. More spillback and NPD

results. Measures to improve evacuation time might be needed where

formally thought unnecessary. In case of a disaster this could

potentially cost human life. However, as mentioned, other modules of

EVAQ might form the accuracy bottleneck.

9.2.2. Implementation recommendations

Two aspects of the new EVAQ will benefit from a better

implementation. The first is the coding structure of EVAQ and the

second is the general development of the Node Input Generator.

 96 Network Performance Degeneration in Dynamic Traffic Management

Code structure

EVAQ is programmed in Matlab, which is understandable as it works

intuitive and is easy to learn. Developers of traffic models can thus

focus on traffic theory instead of the programming language. Matlab

gives the user a lot of freedom, which often leads to indistinct, less

maintainable and possibly inefficient code. EVAQ is no exception as the

split fraction generation shows in section 8.4. The code is indistinct

because very similar blocks of code exist in multiple places. For

voluntary and for recommended/mandatory evacuations the main

model loop, the route set generation and the split fraction generation

have separate sections while the differences are often very minor. The

main difference is the existence of a class dimension for

recommended/mandatory evacuations. Such code organisation is

indistinct and leads to bugs because changes may not be (equally)

applied at all instances of the code. It is better to define an algorithm at

one location. This also makes the code much easier to maintain. For

EVAQ this can easily be achieved by allowing the class dimension to be

singleton for voluntary evacuations. A good framework to use is object-

oriented programming. As of version 2008a, Matlab allows objects that

are easily defined and applied along with regular script-like code.

Currently, the TUDelft uses version 2007b while Rijkswaterstaat uses

2008b. At this moment it is thus not feasible to recode EVAQ in an

object-oriented framework in MATLAB. Other programming languages

will create large hurdles for further development. It is therefore

recommended to restructure EVAQ such that all modules are defined

within a single script or function. Care should be taken to minimise

memory use when forwarding data from one function to another, as

MATLAB will in some cases copy variables.

Node Input Generator

The Node Input Generator was developed within a small time span and

covers a minimum of features. Input errors can be made, as there are

only a few rough checks within the program. Furthermore, once node

input is accepted, there is no way to graphically check the resulting

input. There has also been no feedback by end-users if the program

works as expected and is generally user friendly. It is recommended

that the Node Input Generator will be further developed.

 97 Network Performance Degeneration in Dynamic Traffic Management

10. Bibliography

.

Bliemer, Michiel C.J. (2007) – Dynamic Queuing and Spillback in an

Analytical Multiclass Dynamic Network Loading Model; Transportation

research record, 2007, no. 2029, pp. 14-21

Bliemer, Michiel C.J.; Taale, Henk (2006) – Route Generation and

Dynamic Traffic Assignment for Large Networks; Proceedings of the

first international symposium on DTA, pp. 90-99

Cova, Thomas J.; Johnson, Justin P. (2002) – A Network Flow model

for Lane-based Evacuation Routing; Transportation Research Part A:

Policy and Practice, vol. 37, pp. 579-604, 2003

Daganzo, Carlos F.; Geroliminis , Nikolas (2008) – An Analytical

Approximation for the Macropscopic Fundamental Diagram of Urban

Traffic; UC Berkeley Center for Future Urban Transport: A Volvo

Center of Excellence

Daganzo, Carlos F. (1993) – The Cell Transmission Model; A Dynamic

Representation of Highway Traffic Consistent with the Hydrodynamic

Theory; Transportation Research Part B: Methodological, vol. 28, pp.

269-287, 1994

Daganzo, Carlos F. (1993) – The Cell Transmission Model; Part II;

Network Traffic; Transportation Research Part B: Methodological, vol.

29, pp. 79-93, 1995

Durlin, Thomas; Henn, Vincent (2007) – Dynamic Network Loading

Model with Explicit Traffic Wave Tracking; Transportation research

record, 2008, no. 2085, pp. 1-11

Dijker, T.; Knoppers, P. (2004) – FOSIM 5.0 Gebruikershandleiding,

FOSIM 5.0 User manual; www.fosim.nl

Lenz , H.; Sollacher, R.; Lang, M. (2001) – Standing Waves and the

Influence of Speed Limits; IEEE Transactions on Intelligent

Transportation Systems, 2005, vol. 6, pp. 102-112

Pel, Adam J.; Bliemer, Michiel C.J.; Hoogendoorn, Serge P. (2008) –

EVAQ: A New Analytical Model for Voluntary and Mandatory

Evacuation Strategies on Time-varying Networks; 11th International

IEEE Conference on Intelligent Transportation Systems, 2008. ITSC

2008, pp. 528-533

Planung Transport Verkehr AG (2008) – VISSIM 5.10 User Manual;

www.ptv.de

 98 Network Performance Degeneration in Dynamic Traffic Management

Qian, Xiaoyu (2009) – Application of Macroscopic Fundamental

Diagrams to Dynamic Traffic Management; ITS Edulab, Rijkswaterstaat

& Delft University of Technology (www.its-edulab.nl)

Rakha, Hesham; Zhang, Yihua (2006) – Analytical Procedures for

Estimating Capacity of Freeway Weaving, Merge, and Diverge Sections;

Journal of Transportation Engineering, vol. 132, no. 8, 2006, pp. 618-

628

Rakha, Hesham; Zhang, Yihua (2005) – Systematic Analysis of Weaving

Section Capacity; Transportation Research Board 84th Annual Meeting,

Washington D.C., CD-ROM [Paper 05-0916]

Rijkswaterstaat (2007) – Nieuwe Ontwerprichtlijn Autosnelwegen

(NOA), New Design Guidelines for Highways;

www.verkeerenwaterstaat.nl

Southworth, Frank (1991) – Regional Evacuation Modeling: A State-of-

the-art Review; Oak Ridge National Laboratory, Energy Division,

ORNL/TM-11740

Taale, Henk (2008) – Integrated Anticipatory Control of Road

Networks; T2008/15, December 2008, TRAIL Research School, the

Netherlands

Vermijs, Raymond (1998) – New Dutch Capacity Standards for Freeway

Weaving Sections Based on Micro Simulation; Journal of Transportation

Engineering, vol. 132, issue 8, pp. 618-628, August 2006

Wardrop, J. G. (1952) – Some theoretical aspects of road traffic

research; Proceedings of the Institution of Civil Engineers, Part II,

vol.1, pp. 352-362

Wu, Ning (2001) – A new approach for modeling of Fundamental

Diagrams; Transportation Research Part A: Policy and Practice, vol. 36,

pp. 867-884, 2002

Yperman, Isaak; Immers, Ben (2003) - Capacity of a Turbo-Roundabout

determined by Micro-Simulation; Proceedings of the 10th World

Congress on ITS, Madrid, Spain, November 2003

Yperman, Logghe, Tampere, Immers (2005) – The Multi-Commodity

Link Transmission Model for Dynamic Network Loading; Proceedings of

the 85th Annual Meeting of the Transportation Research Medel for

Dynamic Network Loading, Washington DC, Jan 2006

Zhang, H. M. (2000) – A note on highway capacity; Transportation

Research Part B: Methodological, vol. 35, pp. 929-937, 2001

Syllabus CT4801 (2006) – P.H.L. Bovy, MC.J. Bliemer & R. van Nes –

Transport modeling; Delft University of Technology

 99 Network Performance Degeneration in Dynamic Traffic Management

Syllabus CT4821 (2006) – Serge P. Hoogendoorn – Traffic Flow Theory

and Simulation; Delft University of Technology

Syllabus CT4822 (2008) – Dynamic Traffic Management; Delft

University of Technology

 100 Network Performance Degeneration in Dynamic Traffic Management

Appendix A: EVAQ Algorithm Overview

.

In this appendix the modules reprisented in Figure A.1 will be

elaborated. Products that are forwarded from one module to another

will be indicated by boxed equations. First, the demand model will be

described. The route choice model and the network loading (link and

node model) follow after that. Finally, travel time estimation and route

set generation will be discussed briefly.

Multiclass dynamic travel demand model

Depending on the status of the hazard, location and instructions,

people will or will not leave before a certain time. This is a binary

choice that is modelled with a binary logit model. Such a model

requires, in this instance, a utility to leave, and a utility to stay. What

actually determines the fraction of people that will have left at a certain

time is given by the difference between the two utilities:

() () () () ()kkkkVkV
time

m

time

m

revacr

m

stayr

m ξραυαα 210

,, −−=−

where,

() ()kVkV
evacr

m

stayr

m

,, −

 Net utility to stay at origin r for class m at departure
 time k

210 ,, ααα Behavioural parameters

.

Figure A.1: EVAQ Framework

.

Equation A.1

 101 Network Performance Degeneration in Dynamic Traffic Management

()krυ Thread by hazard(s) at origin r and time k

() () ()()kkk
time

m

time

m

time

m ωωρ −= 1/

 Level of enforcement for class m at time k

()k
time

mω Departure enforcement parameter [0…1] for class m at

 departure time k

() ()'min ' kkk
mKk

time

m −= ∈ξ

 Time overlap with instruction for class m at time k

Also of importance is the level of rationality the road users inhibit

during an evacuation. The response is modelled by an aggregated

parameter.

() () ()()kkk timetimetime φφµ −= 1/

where,

()ktimeφ Departure response parameter [0…1]

The utility is multiplied by this parameter to represent the rationality of

the aggregated users. The fraction of people that will have left origin r

for class m at time k can now be calculated with the binary logit model.

()
() () ()()()kVkVk

k
evacr

m

stayr

m

time

r

m ,,exp1

1

−+
=

µ
χ

This proportion is multiplied with the population to determine the

cumulative number of people that has left. The inflow of link a with

origin r as tail node can thus be given by (see also Figure A.2, the link

model):

() ()∑⋅=
m

r

mra kPkU χ

Multiclass dynamic route choice model

Route choice is modelled with a path-size logit model. Route overlap is

taken into consideration. Again a utility is needed, in this case to

choose a certain route.

() () route

mp

route

m

ndestinatios

m

route

m

ns

p

ns

mp ttV ξρβξρβτβ 2

,

10 ++−=

where,

()tV
ns

mp Utility to take route p to destination s from node/origin

 n for class m at time t

210 ,, βββ Behavioural parameters

()tns

pτ Route travel time from n to s on route p at time t

() () ()()kkk
route

m

route

m

route

m ωωρ −= 1/

 Level of route enforcement for class m

.

Equation A.2

.

Equation A.3: Demand as

fraction of people

.

Equation A.4

.

Equation A.5

 102 Network Performance Degeneration in Dynamic Traffic Management

()k
route

mω Route enforcement parameter [0…1] for class m

ndestinatios

m

,ξ Destination s overlap factor (binary) for class m

∑
∈

=
mpAa

a

p

route

mp l
l

1
ξ

 Factor for route overlap with advised or enforced route

pl , al Length of route p, length of link a (part of route p)

For considering the route overlap, a path size formula is used.

λ Path size parameter

()
()∑

∈













=

pa
ns

amp

ans

mp
tNl

l
tz

1

 Path size factor

() (){ }aptPptN ns

m

ns

am ⊃∈≡ '|'

 Number of routes in route set P using link a

For route choice, rationality is introduced similarly to departure time

choice.

() () ()()kkk routerouteroute φφµ −= 1/

where,

()krouteφ Route response parameter [0…1]

Route proportions from node/origin n to destination s for class m on

route p at time t can be calculated with the path-size logit model using

the above utility and factors.

()
() () ()()()

() () ()()()
()

∑ ∑
∈ ∈

+

+
=

Ss tPp

ns

mp

ns

mp

route

ns

mp

ns

mp

route

ns

mp

ns
m

tztVt

tztVt
t

' '

'

'

'

' lnexp

lnexp

λµ

λµ
ψ

Route choice is modelled not only at the departure, but also en-route.

In the route choice model, every node is treated separately. Route

proportions can thus easily be translated to split fractions at the nodes.

All traffic from the incoming links is aggregated and divided over the

outgoing links with these split fractions.

Multiclass dynamic network loading model

The DNL model is derived from Bliemer (2007). It contains two sub

models; a link and a node model. Links are split into two sections, a

free flow section and a congested section as in Figure A.2. The

congested part might have a length of zero. The link model determines

how traffic propagates over the link and keeps track of the queue and

what can potentially leave the link in a time step. The node model

.

Equation A.6

.

Equation A.7

.

Equation A.8: Split fractions

 103 Network Performance Degeneration in Dynamic Traffic Management

determines the amount of traffic that can actually cross the

intersection, thus determining outflow and inflow of links ahead.

The dynamic loading model is used slightly different from how it is

described by Bliemer (2007). The main difference is the discretisation as

opposed to a continuous definition. This paragraph describes the

loading model as it is used in EVAQ. Important things to keep in mind

are the following:

- The status of time step t is used to derive a new status for time

step t+1

- A clear distinction between cumulative and momentary

quantities should be made. Cumulative quantities are denoted

as Q .

- For simplicity, classes are omitted.

Link model

First, the link model is applied on every link a. Potential link outflows

are the main purpose of the link model. These potential flows depend

heavily on the queue. The number of vehicles at time step t on the link

is determined as the difference between the cumulative inflow and

cumulative outflow.

() ()tVtUX aaa −=

The maximum inflow is determined by either using the flow capacity or

remaining storage capacity.

()aaaa XXCU −= maxmax ,min

The number of vehicles in the queue can be calculated as the difference

between the cumulative queue inflow and the cumulative link outflow.

() ()tVtQX aa

q

a −=

With the number of vehicles in queue and a link queue density, a

queue length can be acquired.

q

a

q

aq

a
k

X
L =

Next, the potential outflows will be determined. Depending on the

length of the queue, this might need the cumulative queue inflow of

.

Figure A.2: Link model

.

Equation A.9

.

Equation A.10: Maximum link

inflow

.

Equation A.11

.

Equation A.12

tail node head node

 104 Network Performance Degeneration in Dynamic Traffic Management

the next time step. If the number of vehicles in the queue is less than

the capacity per time step, free flow traffic might also leave the link

within the next time step. For links b with a

q

a CX < , the free flow

length and speed are used to determine τ, which is the (non integer)

number of periods relative to t that vehicles now entering the queue,

entered the link. The queue inflow is calculated by linear interpolation

between  τ−t and  τ−t .

()  ()  ()  ()  (){ }[]τττττ −−−⋅−+−=+ tUtUtUtQ bbbb 1

A new number of vehicles in queue is calculated for these links:

() ()tVtQX bb

q

b −+= 1

Note that this is not the actual number of vehicles in queue at time t,

however it is the number of vehicles that determines the potential

outflow from t until t+1.

All vehicles ‘in queue’, limited by the capacity, can potentially leave the

link.

()b

q

b

potential

b CXV ,min=

For links c with c

q

c CX ≥ the potential outflow is simply the capacity.

c

potential

c CV =

For links o with origin r as tail node, the inflow is determined by

applying the maximum inflow or the cumulative demand ()tP
n

n χ⋅ at

node (origin) n if it is less.

() () ()()tPUtUtU
n

nooo χ⋅+=+ ,min1
max

Links d connected to destinations cannot have a queue. Therefore the

cumulative outflow is equal to the cumulative queue inflow as

calculated for links a. Links d form a subset of links a since

d

q

d CX <= 0 .

() ()11 +=+ tQtV dd

Potential outflows and maximum inflows have now been determined

for all links. Also for links connected to origins, the inflow is

determined. For links connected to destinations, the outflow is

determined. The node model will handle all other nodes and connected

link inflows and link outflows.

.

Equation A.13: Queue inflows

(Xq < C)

.

Equation A.14

.

Equation A.15: Potential link

outflows (b)

.

Equation A.16: Potential link

outflows (c)

.

Equation A.17: Origin link

inflows

.

Equation A.18: Destination

link outflows

 105 Network Performance Degeneration in Dynamic Traffic Management

Node model

The node model is applied on every node n. The node has incoming

links a and outgoing links b. The potential inflow of links b is calculated

by applying the split fractions on the potential outflow from the link

model of links a, or on the maximum cumulative outflow
max

aV determined by the hazard (capacity reduction).

() ()()tVVVtU aa

potential

a
a

nspotential

b −⋅= max,minψ

If the potential flow is higher than maximum flow on any link b, a ratio

smaller than one is applied on all flows. This assumes that vehicles will

wait at the intersection and not before the intersection. Otherwise a

ratio of one is used.









= 1,min

max

potential

b

b

b U

U
ratio

() () potential

bbb UratiotUtU ⋅+=+1

() () potential

aaa UratiotVtV ⋅+=+1

The only thing that remains is calculating the queue inflows of links c

from the link model. This is calculated similarly to links b from the link

model.

()  ()  ()  ()  (){ }[]τττττ −−−⋅−+−=+ tUtUtUtQ cccc 1

All link inflows, queue inflows and link outflows have now been

calculated for time step t+1 based on the status at time step t.

Travel time estimation

Since time is of the essence in evacuations, travel time is an important

measure used for route choice (optionally together with an instruction).

Travel time is estimated by assuming a fixed speed for congested

traffic.

() ∞⋅++
−

= ϕ
ϑϑ

τ
q

q

a

am

q

aa

am

LLL
t

max

where,

()tamτ Instantaneous travel time of link a for class m

aL Length of link a

q

aL Queue length on link a

max

amϑ Maximum (free flow) speed on link a for class m

qϑ Assumed queue speed

.

Equation A.19

.

Equation A.20

.

Equation A.21: Link inflows

.

Equation A.22: Link outflows

.

Equation A.23: Queue inflows

(Xq ≥ C)

.

Equation A.24: Link travel

times

 106 Network Performance Degeneration in Dynamic Traffic Management

ϕ Link affected by hazard (0 or 1)

Links that are hit by the hazard get an infinite travel time. This assures

that these links will not be chosen.

Route set generation

The route set generation algorithm was based on an algorithm by

Bliemer & Taale (2006). For every OD pair, where all nodes are an

origin, multiple routes will be generated. For every next route, all link

costs are determined as the travel time estimation, but travel times are

made stochastic. For this a normal distribution is used with increasing

standard deviation for every next route starting with a standard

deviation of zero. Routes are then generated using a shortest path

algorithm. Duplicate routes will be omitted.

 107 Network Performance Degeneration in Dynamic Traffic Management

Appendix B: Node Input Generator

.

The changes for the DNL model involve a lot of input for nodes that

can be specific for the nodes, the entering links or even the entering

lanes. Much of this input is graphically not complex, but has to be

represented in many small two or three dimensional matrices that have

a subset of the following dimension: entrance link, exit link, lane and

conflict. Creating such input manually will most certainly generate

errors as conflicts are easily overlooked and matrix elements are easily

filled in a wrong column and/or row. For these reasons a small utility

was developed that allows a graphical generation of the node input.

The utility works from an existing network and will define node input

dependant on the connecting links and the user input. Generating all

node input will take some time, it is therefore wise to first define the

network links and after that the nodes. Adding or deleting links

afterwards will create inconsistencies between the actual links and the

links that are assumed to exist for the node model. The Node Input

Generator currently only works as a generator and not as a

viewer/verifier of existing nodes and conflicts.

The Graphical User Interface

When starting the node input generator program, a blank screen will

appear. In the menu you can select ‘Network > Load network’ that lets

you select a Matlab data file. The data file should at least hold the

EVAQ data: links, nodes, coordinates & mapscale. A map of the

network will be displayed on the screen as in Figure B.1 (left).

By right-clicking on a node you can select ‘Define input’ that lets you

generate the node model input. The screen will change to Figure B.1

(right). By default the node type is ‘None’ as can be seen in the node

type selection box. This type will not have any simulated conflicts on

the node. It can be used for origin nodes, destination nodes, nodes that

.

Figure B.1: Network view (left)

and type ‘none’ (right)

 108 Network Performance Degeneration in Dynamic Traffic Management

function as a link in-homogeneity (for instance a change in maximum

speed) and nodes that merely function as an entry from a connector

but are not actually an intersection. Often it is not needed to explicitly

define these nodes as ‘None’ as all nodes start as such a node. It is

however sometimes needed to prohibit certain turns over the node. By

selecting a link (it will become red) and un-checking the ‘All’ checkbox,

the button ‘Turn Matrix …’ enables. It will show a pop-up window as

in Figure B.2 (left).

By clicking on a turn direction in the pop-up window, the turn will be

enabled (green) or disabled (red). In Figure B.2 (left) the U-turn from

and to the north is disabled. Click ‘OK’ in the pop-up window to accept

any changes. This process needs to be repeated for every link from

which turns are impossible. If all turns are possible, select the ‘All’

option.

Controlled intersections

By selecting ‘Controlled’ in the node type selection box a few additional

features become available. The node is now a controlled node for

which turn lanes need to be defined. Similar to the turn matrix, turn

lanes are defined per link. To define the turn lanes, select a link and

click on the ‘Lane map …’ button. You will be asked to give a number

of lanes. After this a pop-up window will appear as in Figure B.2 (right).

The number of lanes can be changed at any time by clicking on the

‘Lane map …’ button again and giving another number of lanes. Any

existing lane map will be discarded. If you give a number of lanes equal

to the current lane map (default answer), the current lane map will be

shown. In Figure B.2 (right) we see two turn lanes from the north. For

each turn lane, lines in the directions of all downstream links are

displayed. Green lines mean that from that turn lane, the given

direction is possible. Red means that the direction is impossible. The

status can be changed by clicking on the lines. Additional to the arrows

on the road itself, a U-turn (if possible) should also be included on the

left lane. By clicking ‘OK’ you accept the changes. The lane map will be

checked. All lanes should be used and turn directions should not

conflict. As there are lane maps for each link of a controlled

intersection, the lane maps are used to define the turn matrix. The ‘Use

lane maps’ checkbox is checked by default and the lane maps will be

.

Figure B.2: Turn possibilities

(left) and lane map (right)

 109 Network Performance Degeneration in Dynamic Traffic Management

automatically translated into a turn matrix for the entire intersection.

The ‘Generate groups …’ button will generate all valid conflict groups

for the intersection based on all possible moves of the turn matrix. Also

the effective conflict capacity fraction will be determined for groups

that cannot be facilitated by all green phases. The algorithm behind this

button will be explained in a following section for all node types the

button applies to.

Uncontrolled and priority intersections

Uncontrolled and priority intersections are very similar to controlled

intersections in the context of this program. The only difference is that

for uncontrolled and priority intersections, links may be defined as

being a priority link by selecting ‘Priority link’. The selected link will

become dashed to indicate the priority as in Figure B.3 (left).

Another difference is the group generation. The ‘Generate groups …’

button will generate all valid minor and major flow groups per link and

per lane. Minor flows are a set of lane specific partial flows, major flows

are conflicting turn flows common among all related minor flows per

group.

Roundabouts

Roundabouts are a very different story. First of all, a roundabout type

needs to be defined. It can be 1-Lane, 2-Lane or Turbo. The first two

options work similarly. The 1-Lane and 2-Lane roundabout model

needs alpha, beta and gamma values representing the influence of the

pseudo conflict, number of lanes on the roundabout and number of

lanes on the link respectively. The beta value is thus related to the

roundabout type and will be calculated automatically. Input for alpha

and gamma can be given per link and/or for the entire node, see Figure

B.3 (right). The latter is useful if for example most connecting links

have 1 lane. Parameters that are not given for a link will be taken from

the node. A mixture of node level and link level input is thus possible.

To perform these actions on the link level, a link needs to be selected.

The ‘Generate groups …’ button will generate groups of turn flows that

make up Vexit and Vcirc per link.

.

Figure B.3: Uncontrolled (left)

and 1-Lane roundabout (right)

 110 Network Performance Degeneration in Dynamic Traffic Management

Turbo roundabouts

Turbo roundabouts can exist in many different forms. The same model

as for 1-Lane and 2-Lane roundabouts is used but on lane level. To

analyse which partial flows make up Vexit and Vcirc and what the value

for beta should be, the turbo roundabout needs to be drawn as a set of

links between various nodes. Figure B.4 (left) shows the default node

layout for the selected network node.

Black squares are the entrance lanes while the grey squares are the exit

lanes. The grey circles are lanes at the roundabout. Between any two

links a set of roundabout nodes is given. At any set of nodes, a node

can be added or removed by right clicking on any node within the set

and selecting ‘Add node’ or ‘Remove node’. Links can be created

between the nodes by dragging from one node to another. The driving

direction will automatically be determined as being against the direction

of the clock. Links can be deleted by right-clicking on them and

selecting ‘Delete link’. It is good practice to set the right number of

nodes at all sets before drawing the links. The drawing can be reset by

temporarily setting the roundabout type to 1-Lane or 2-Lane. For each

entrance lane, an alpha value needs to be given. This can be done by

right-clicking on the node, selecting ‘Set alpha’ and giving the C-C’

distance. Figure B.4 (right) shows an example turbo roundabout

including the alpha values at the entrance lanes. The ‘Generate groups

…’ button will analyse the drawing to define a set of partial flows per

lane that make up Vexit and Vcirc. Also the beta value for each lane will

be calculated. Additionally, lane maps for all links and the turn matrix

will be created. For this process to work, the turbo roundabout should

be drawn correctly. Entrance lanes should only connect to the set of

roundabout lanes in the downstream direction. Exit lanes should only

connect to the set of roundabout lanes in the upstream direction.

Finally, circular lanes should never skip a roundabout set. Incomplete

roundabouts however can be defined, should they ever be

encountered. Note that dog-bone and oval roundabouts are better

modelled by a single roundabout with appropriate parameters for the

pseudo conflict.

.

Figure B.4: Turbo nodes (left)

and complete with links (right)

 111 Network Performance Degeneration in Dynamic Traffic Management

Weaving sections

A last node type is a weaving section, also used for on-ramps and off-

ramps. This type is only selectable if the number of entering and exiting

links is one or two. Also the number of incoming and exiting lanes may

differ up to one. According to the difference in the number of lanes,

either a merging taper or diverge taper can be indicated. If the number

of lanes is equal it is possible to indicated both a merge and a diverge

taper.

In the network view, all defined node types are made visible as in

Figure B.1 (left).
• Red square: controlled intersection

• Green square: uncontrolled or priority intersection

• Blue circle: roundabout

• Yellow triangle: weaving section

These markers will also be visible after loading a network where

conflicts are already defined. The specific node input will however not

be shown after selecting ‘Define input’. The network can be saved

through the network menu.

Conflict generation algorithm

The various algorithms to generate the conflict groups are quite

extensive in size. For detailed information the reader is advised to look

at the ‘genGroups’ function in the Matlab code, see appendix D.

Comments are provided to explain the code, still knowledge of Matlab

is needed. Here a general description of the various algorithms will be

given.

Controlled intersections

Conflict groups at controlled intersections are groups where all turn

flows intersect with all other turn flows in the group. A first step is to

find all crossings between turn flows. This is performed by defining

straight lines between the entrance and exit links in a circle with a

radius of one. If two lines intersect at a location within the circle, the

two turn flows cross. U-turns are ignored, as these are not taken into

account for the design of traffic light phasing. Step one results in a set

of 2-phase conflicts. The second step is to loop as long as larger

conflicts are found. The first loop finds 3-phase conflicts by recognizing

overlap between two 2-phase groups, but also a difference. Both

groups should have one turn flow that is not in the other group. If

these two turn flows are crossing themselves, all turn flows from the

two groups form a group. This process also applies to larger groups. It

is important to discard any conflict group that is a subset of a larger

group. The next loop will find 4-phase conflict groups by analysing the

3-phase conflict groups. If larger groups are not found, the process

ends. The set of conflicts is a matrix with the dimensions (entrance_link

x exit_link x conflict) that is stored at the node level.

 112 Network Performance Degeneration in Dynamic Traffic Management

Uncontrolled and priority intersections

For these intersections, each group exists out of a set of partial flows

from a specific lane and all common major flows. Step one is similar as

for controlled intersection with the difference that U-turns are taken

into account. Step two is to find all major flows per turn flow from a

specific link. A turn flow is major if it comes from a priority link while

the current link is not a priority link, or if it comes from the right while

both links are or are not a priority link. Step three is to loop over many

sets of partial flows, from a specific lane, with various sizes. For each

set the common major flows should be found. Here it is also important

to discard groups that are a subset of another group. Groups are stored

as matrices per lane and have the following dimensions for minor (1 x

exit_link x conflict) and for major (entrance_link x exit_link x conflict).

The ‘1’ for minor sets unifies the dimension order with major sets and is

of course related to the link of the specific lane.

Roundabouts

At roundabouts conflicts are experience while entering the roundabout.

Two flows are important, exit flow and circular flow. Exit flow will only

exist if the first link to the left is an exit link. All turn flows towards this

link are the exit flow. Circular turn flows are found by looping over all

turn flows and analysing the total angle performed by a turn flow. If

this angle is larger than the angle towards the entrance link in question,

the turn flow goes past the entrance link and is thus part of the circular

flow. Both sets of turn flows for exit flow and circular flow are stored in

a matrix per link with the following dimensions: (entrance_link x

exit_link).

Turbo roundabouts

The algorithm for turbo roundabouts involves the creation of lane

maps, a turn matrix, beta values per lane, exit flow per lane and circular

flow per lane. All of these are found by ‘travelling’ along the links. A

common step in this process is to find all nodes (of all types) either

upstream or downstream from a current set of nodes. Important is to

also have a set of stop nodes that prevents movements over more than

a full circle. For the lane map, the stop nodes are the first downstream

set of roundabout nodes from an entrance node. Possible movements

are found by travelling further and further downstream. Circular flow is

found starting at an entrance node and moving downstream once. Stop

nodes are all nodes at this cross section. Nodes with circular flow

include all nodes to the right at this cross section, as flow towards these

nodes crosses with the entrance movement. From the set of circular

nodes, the algorithm travels upstream to find all partial flows that use

the nodes. The number of nodes after travelling upstream the first time

resembles the number of lanes of the circular flow and thus defines the

beta value. Partial flows are not only defined by the lane and link they

come from, but also by the link they go to. At every cross section, the

algorithm travels downstream once to find exit nodes. The

accompanying exit link will, from that moment on, not be an exit link

for partial flows, as apparently these partial flows exit the roundabout

instead of circulating further. Exit flow can be found by travelling

upstream from the correct exit nodes. Stop nodes are defined just

 113 Network Performance Degeneration in Dynamic Traffic Management

downstream of the exit nodes. What remains is to find the correct exit

nodes in the first place. This starts very similar as with circular flow.

After having travelled upstream twice over the roundabout nodes, the

algorithm travels downstream once to find all exit nodes that hold flow

that could potentially intersect with the entrance movement. Finally the

turn matrix is derived from the lane maps. For each lane, the set of

partial flows for the exit flow and circular flow are stored in matrices

with the following dimension: (entrance_link x exit_link x lane).

 114 Network Performance Degeneration in Dynamic Traffic Management

Appendix C: VISSIM comparison

.

The following plots show the queue length (vertical axis in meters) through time (horizontal axis in

minutes). For each link at each node type there is a separate plot that holds 30 model runs. EVAQ plots

are to the left while VISSIM plots are to the right. Capacity errors (%) of the node model are also given.

These largely explain the differences in slope. The black line is the average queue length.

Controlled intersection

Link 1 (44%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

Link 2 (2%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

Link 3 (33%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

Link 4 (10%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

 115 Network Performance Degeneration in Dynamic Traffic Management

Uncontrolled intersection
Link 1 (14%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

Link 2 (26%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

Link 3 (15%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

Link 4 (1%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

 116 Network Performance Degeneration in Dynamic Traffic Management

Priority intersection
Link 1 (-22%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

Link 2 (-5%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

Link 3 (-26%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

Link 4 (-7%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

 117 Network Performance Degeneration in Dynamic Traffic Management

2-lane roundabout
Link 1 (-12%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

Link 2 (-14%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

Link 3 (-9%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

Link 4 (-6%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

 118 Network Performance Degeneration in Dynamic Traffic Management

Turbo roundabout
Link 1 (23%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

Link 2 (12%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

Link 3 (24%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

Link 4 (-4%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

 119 Network Performance Degeneration in Dynamic Traffic Management

Weaving section
Link 1 (-16%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

Link 2 (-1%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

On ramp

Link 1 (-32%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

Link 2 (51%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

Off ramp

Link 1 (-24%)

0 20 40 60
0

500

1000

0 20 40 60
0

500

1000

 120 Network Performance Degeneration in Dynamic Traffic Management

Appendix D: Matlab code

.

Appendix D holds most code that resulted from the various

developments. Code is given from:

• EVAQ initialisation

• Cell Based Queuing

• Node model

• Node Input Generator

Most code is commented and should be self-explanatory. Matlab

experience, or at least some programming experience, is required.

EVAQ initialisation

Two parts of the initialisation code are specific to the new link and

node model. The first part defines the node model parameters while the

second part performs initial steps of the link and node model.

001

002

003

004

005

006

007

008

009

010

011

012

% Node model parameters

CONSTANTS.ConflictCap = 1300; % controlled: conflict group capacity [pcu/h]

CONSTANTS.MinGapAcceptance = 4/3600; % minor/major: flow gap acceptance [h]

CONSTANTS.AverageHeadway = 2/3600; % minor/major: average headway of following vehicles [h]

CONSTANTS.RoundaboutAlpha = [0 9 21 27 28 inf; .6 .6 .1 .1 0 0]; % must be full positive range

 % roundabout: multi-linear alpha curve (vs. C-'C [m])

CONSTANTS.RoundaboutBeta = [0.95 .7]; % roundabout: beta for 1 or 2 roundabout lanes

CONSTANTS.RoundaboutGamma = [1 .65]; % roundabout: gamma for 1 or 2 link lanes

CONSTANTS.LaneChangeUtil = -.95; % weave model: utility of a lane change

CONSTANTS.TaperUtil = -.17; % weave model: utility of taper use, or the merging lane

CONSTANTS.WeaveFraction = 0.79; % weave model: fraction of weaving traffic over the lane

CONSTANTS.WeaveLaneCap = 3791; % weave model: (very local) lane capacity [pcu/h]

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

% CBQ

% deduce congested wave speeds from triangular fundamental diagrams

WaveSpeed = network.LinkCapacity./(CONSTANTS.QueueDensity*network.LinkLanes -...

 network.LinkCapacity./network.LinkSpeed);

% devide the links into cells

network.CongCellLength = (WaveSpeed*CONSTANTS.DeltaK);

network.CellCount = network.LinkLength./network.CongCellLength;

network.CellLastFactor = rem(network.CellCount, 1);

network.CellCount = ceil(network.CellCount);

network.CellLastFactor(network.CellLastFactor==0) = 1; % integer number of cells

CONSTANTS.MaxCells = max(network.CellCount); % least amount of past flow in memory

% Node model

for n = 1:length(conflicts)

 % calculate controlled capacities from ideal capacity fractions

 if strcmp(conflicts(n).type, 'Controlled')

 conflicts(n).node.capacities = conflicts(n).node.capacities*...

 CONSTANTS.ConflictCap*CONSTANTS.DeltaK;

 end

 % initiate previous time step flows

 if strcmp(conflicts(n).type, 'Uncontrolled') || strcmp(conflicts(n).type, 'Roundabout')

 % scalar will be expanded to matrix size, after the first loop the

 % prevTurnFlows will be overwritten with matrices

 conflicts(n).node.prevTurnFlows1 = 0;

 conflicts(n).node.prevTurnFlows2 = 0;

 end

 % calculate alpha/beta/gamma

 if strcmp(conflicts(n).type, 'Roundabout') && ~strcmp(conflicts(n).node.type, 'Turbo')

 % 1-Lane / 2-Lane

 % node level

 if ~isempty(conflicts(n).node.alpha)

 conflicts(n).node.alpha = interp1q(CONSTANTS.RoundaboutAlpha(1,:)', ...

 121 Network Performance Degeneration in Dynamic Traffic Management

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

 CONSTANTS.RoundaboutAlpha(2,:)', conflicts(n).node.alpha);

 end

 conflicts(n).node.beta = CONSTANTS.RoundaboutBeta(conflicts(n).node.beta);

 if ~isempty(conflicts(n).node.gamma)

 conflicts(n).node.gamma = CONSTANTS.RoundaboutGamma(conflicts(n).node.gamma);

 end

 % link level

 for i = 1:length(conflicts(n).node.inlinks)

 if ~isempty(conflicts(n).node.inlink(i).alpha)

 conflicts(n).node.inlink(i).alpha = interp1q(CONSTANTS.RoundaboutAlpha(1,:)', ...

 CONSTANTS.RoundaboutAlpha(2,:)', conflicts(n).node.inlink(i).alpha);

 end

 if ~isempty(conflicts(n).node.inlink(i).gamma)

 conflicts(n).node.inlink(i).gamma = ...

 CONSTANTS.RoundaboutGamma(conflicts(n).node.inlink(i).gamma);

 end

 end

 elseif strcmp(conflicts(n).type, 'Roundabout')

 % Turbo

 for i = 1:length(conflicts(n).node.inlinks)

 for j = 1:length(conflicts(n).node.inlink(i).lane)

 conflicts(n).node.inlink(i).lane(j).alpha = ...

 interp1q(CONSTANTS.RoundaboutAlpha(1,:)', ...

 CONSTANTS.RoundaboutAlpha(2,:)', conflicts(n).node.inlink(i).lane(j).alpha);

 conflicts(n).node.inlink(i).lane(j).beta = ...

 CONSTANTS.RoundaboutBeta(conflicts(n).node.inlink(i).lane(j).beta);

 conflicts(n).node.inlink(i).lane(j).gamma = 1;

 end

 end

 end

end

% LCM (1st splitter)

for m =1:length(conflicts)

 if isfield(conflicts(m).node, 'inlink')

 if ~isfield(conflicts(m).node.inlink, 'lanemap')

 continue

 end

 for n = 1:length(conflicts(m).node.inlink)

 lanemap = conflicts(m).node.inlink(n).lanemap;

 % remove impossible turns, but remember correct number

 turns = find(sum(lanemap,2)>0);

 map = lanemap(sum(lanemap,2)>0,:);

 % loop and find independant blocks

 laneSplits = 1;

 flowSplits = 1;

 go = true;

 i = 1;

 j = 1;

 while go

 if j+1 <= size(map,2) && map(i,j+1) == 1

 % dependant with next lane

 j = j+1;

 elseif i+1 <= size(map,1) && map(i+1,j) == 1

 % dependant with next flow

 i = i+1;

 elseif j+1 <= size(map,2) && i+1 <= size(map,1)

 % independant block found

 j = j+1;

 i = i+1;

 laneSplits = [laneSplits j];

 flowSplits = [flowSplits turns(i)];

 else

 % the end

 go = false;

 end

 end

 % add additional index as end of last block

 laneSplits = [laneSplits size(lanemap,2)+1];

 flowSplits = [flowSplits size(lanemap,1)+1];

 conflicts(m).node.inlink(n).laneSplits = laneSplits;

 conflicts(m).node.inlink(n).flowSplits = flowSplits;

 end

 end

end

 122 Network Performance Degeneration in Dynamic Traffic Management

Cell Based Queuing

Cell Based Queuing is performed in a separate function. For the

interpolation and cell state determination separate functions are used as

these are also used elsewhere.

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

058

059

060

061

062

063

064

065

066

function [MaximumInflow QueueInflow PotentialOutflow] = CBQ(network, CONSTANTS, column,

temporary)

% This function performs the Cell Based Queueing modelling framework to

% derive maximum inflow, queue inflow and potential outflow.

%

% NOTE: The performance of this function heavily relies on keeping the

% temporary structure as is. Any changes to it's fields requires a copy in

% memory. Vectors are thus returned that should be implemented into the

% temporary structure in any function that calls this function.

% Vehicles in queue and on the link

LinkLoad = sum(temporary.LinkInflow(:,column,:),3) - ...

 sum(temporary.LinkOutflow(:,column,:),3);

QueueLoad = sum(temporary.QueueInflow(:,column,:),3) - ...

 sum(temporary.LinkOutflow(:,column,:),3);

QueueLoad(QueueLoad<1e-12) = 0; % rounding issues -> very small negative numbers

% Pre-allocate

MaximumInflow = zeros(CONSTANTS.Links, 1);

QueueInflow = zeros(CONSTANTS.Links, 1, CONSTANTS.Classes);

PotentialOutflow = zeros(CONSTANTS.Links, 1, CONSTANTS.Classes);

QueueLength = zeros(CONSTANTS.Links, 1);

%% Loop the links

for n = 1:CONSTANTS.Links

 % Deduce cell states

 if QueueLoad(n) > 0

 [L T S shockEnable] = cellStates(network, column, temporary, CONSTANTS, n, QueueLoad(n));

 % make cumulative

 L = [0 cumsum(L)];

 T = [0 cumsum(T)];

 S = [0 cumsum(S)];

 % interpolate queue length

 QueueLength(n,1) = interpCBQ(QueueLoad(n), S, L);

 else

 % no queue

 shockEnable = false;

 end

 % Queue inflow

 FreeFlowLength = max(network.LinkLength(n)-QueueLength(n,1), 0);

 Period = min(max(column+1-...

 FreeFlowLength./(network.LinkSpeed(n)*CONSTANTS.DeltaK), 1), column);

 % If Period equals column, the free flow section is transversed within

 % a time step and thus QueueInflow will in reality also have vehicles

 % not on the link yet.

 QueueInflow(n,1,1:CONSTANTS.Classes) = temporary.LinkInflow(n,floor(Period),:) + ...

 rem(Period,1) * (temporary.LinkInflow(n,ceil(Period),:) - ...

 temporary.LinkInflow(n,floor(Period),:));

 % Maximum inflow

 if shockEnable

 MaximumInflow(n) = max(min(network.LinkCapacity(n)*CONSTANTS.DeltaK, ...

 sum(S(1,end,:),3)-LinkLoad(n)), 0);

 else

 % for early time steps the storage does not cover all cells

 MaximumInflow(n) = network.LinkCapacity(n)*CONSTANTS.DeltaK;

 end

 % Potential outflow

 if QueueLoad(n) == 0

 % as there is no queue, the queue inflow is equal to the outflow

 PotentialOutflow(n,:,:) = QueueInflow(n,1,:) - ...

 temporary.QueueInflow(n,column,:);

 123 Network Performance Degeneration in Dynamic Traffic Management

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

 else

 % assume a large queue

 AggregatedPotentialOutflow = interpCBQ(CONSTANTS.DeltaK, T, S);

 if AggregatedPotentialOutflow < QueueLoad(n)

 % all vehicles are indeed queued, get potential outflows from

 % queue inflow as all classes have the same speed, find time

 % where the total number of vehicles is equal to x

 x = sum(temporary.LinkOutflow(n,column,:),3) + AggregatedPotentialOutflow;

 xArray = sum(temporary.QueueInflow(n,1:column,:),3);

 d = xArray - x;

 k = length(d(d<0));

 f = (x-xArray(k))/(xArray(k+1)-xArray(k)); % fraction of linear step

 PotentialOutflow(n,:) = temporary.QueueInflow(n,k,:) + ...

 f.*(temporary.QueueInflow(n,k+1,:)-temporary.QueueInflow(n,k,:)) - ...

 temporary.LinkOutflow(n,column,:);

 else

 % small queue, add free flow vehicles

 QueueTravelTime = interpCBQ(QueueLoad(n), S, T);

 Tremainder = CONSTANTS.DeltaK-QueueTravelTime;

 Lab = Tremainder.*network.LinkSpeed(n);

 FreeFlowLength = network.LinkLength(n)-(QueueLength(n,1)+Lab);

 % similar to queue inflow but with a different distance and for the

 % current time step as we need the current vehicles within the range

 Period = max(column-FreeFlowLength./(network.LinkSpeed(n)*CONSTANTS.DeltaK), 1);

 PotentialOutflow(n,:,:) = temporary.LinkInflow(n,floor(Period),:) + ...

 rem(Period,1) * (temporary.LinkInflow(n,ceil(Period),:) - ...

 temporary.LinkInflow(n,floor(Period),:)) - temporary.LinkOutflow(n,column,:);

 end

 end

 % Apply hazard destruction

 PotentialOutflow(n,:,:) = min(PotentialOutflow(n,:,:), ...

 permute(temporary.MaxLinkOutflow(n,:), [1 3 2]));

end

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

function [L, T, S, shockEnable] = cellStates(network, column, temporary, CONSTANTS, n, QueueLoad)

% deal with early time steps

if column-network.CellCount(n) < 1

 nCells = column-1;

 fLast = 1;

 shockEnable = false; % ignore storage constraint

else

 nCells = network.CellCount(n);

 fLast = network.CellLastFactor(n);

 shockEnable = true;

end

% get flow pattern (in reversed order), sum classes

pastFlow = sum(temporary.LinkOutflow(n,column:-1:column-nCells,:), 3);

cellFlow = pastFlow(1,1:end-1) - pastFlow(1,2:end); % cumulative to momentary

cellFlow = cellFlow./CONSTANTS.DeltaK; % pcu/dt -> pcu/h

% calculate to density and speed via the fundamental diagram

kjam = CONSTANTS.QueueDensity*network.LinkLanes(n);

kcap = network.LinkCapacity(n)/network.LinkSpeed(n);

cellDens = kcap+((network.LinkCapacity(n)-cellFlow)*(kjam-kcap)/network.LinkCapacity(n));

cellSpeed = cellFlow./cellDens;

% apply saturation flow on the first cell

cellSpeed(1) = max(cellFlow(1), network.LinkSaturationFlow(n))/cellDens(1);

cellSpeed(cellSpeed<0) = 0; % rounding errors

% calculate to travel time and storage

L = ones(1,nCells).*network.CongCellLength(n);

L(end) = L(end).*fLast;

T = L./cellSpeed;

S = L.*cellDens;

001

002

003

004

005

006

007

function out = interpCBQ(in, cumulIn, cumulOut)

% This function interpolates as interp1q does, but it works faster as it is

% specific to the linear method and it only works for a single 'in' value.

% The edge values are returned for out of range values.

d = cumulIn - in;

k = length(d(d<0));

if k == 0

 124 Network Performance Degeneration in Dynamic Traffic Management

008

009

010

011

012

013

014

015

016

 out = cumulOut(1);

elseif k == length(cumulOut);

 out = cumulOut(k);

else

 sx = in - cumulIn(k);

 dx = cumulIn(k+1)-cumulIn(k);

 dy = cumulOut(k+1)-cumulOut(k);

 out = cumulOut(k) + sx*dy/dx;

end

Node model

The node model is programmed in the nodeModel functions. Sub

functions of the Lane Choice Model are contained within the same file.

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

057

function [LinkInflow LinkOutflow conflicts] = nodeModel(network, CONSTANTS, ...

 column, SplitFractions, MaximumInflow, PotentialOutflow, ...

 Departures, evacscheme, conflicts, temporary)

% This function performs the node model to derive actual inflow and

% outflow.

%

% NOTE: The performance of this function heavily relies on keeping the

% temporary structure as is. Any changes to it's fields requires a copy in

% memory. Vectors are thus returned that should be implemented into the

% temporary structure in any function that calls this function.

% Pre-allocate

LinkInflow = zeros(CONSTANTS.Links, 1, CONSTANTS.Classes);

LinkOutflow = zeros(CONSTANTS.Links, 1, CONSTANTS.Classes);

% permute: [outlink, classes, 1] -> [inlink, outlink, classes]

SplitFractions = permute(SplitFractions, [3 1 2]);

% Connector links

for i = 1:length(network.ConnectorsO)

 % get classes from scheme

 if ~isempty(evacscheme)

 classes = find(evacscheme.Origins == network.LinkTail(network.ConnectorsO(i)));

 else

 classes = 1;

 end

 departingVehicles = SplitFractions(1,network.ConnectorsO(i),classes) .* ...

 ((Departures(network.ConnectorsO(i)) / CONSTANTS.Occupation) - ...

 temporary.LinkInflow(network.ConnectorsO(i),column,classes)); % [1 x 1 x classes]

 ratio = min(MaximumInflow(network.ConnectorsO(i))/sum(departingVehicles), 1);

 LinkInflow(network.ConnectorsO(i),1,classes) = ratio * departingVehicles;

end

affected = intersect(network.ConnectorsO,find(temporary.AffectedLinks));

LinkInflow(affected,1,:) = 0;

% destination links have infinite output capacity

LinkOutflow(network.ConnectorsD,1,:) = ...

 temporary.QueueInflow(network.ConnectorsD,column+1,:) - ...

 temporary.QueueInflow(network.ConnectorsD,column,:);

% Other links, loop nodes they connect to

for n = 1:CONSTANTS.Nodes

 if any(network.Origins == n) || any(network.Destinations == n)

 continue

 end

 store = '';

 % Calculate turnflows

 nIn = length(conflicts(n).node.inlinks);

 nOut = length(conflicts(n).node.outlinks);

 turnFlows = zeros(nIn, nOut, CONSTANTS.Classes);

 if nOut == 1

 % Merge

 % no route choice

 turnFlows(:,1,:) = PotentialOutflow(conflicts(n).node.inlinks,1,1:CONSTANTS.Classes);

 else

 % Intersection

 % get turn matrix

 turnmatrix = conflicts(n).node.turnmatrix;

 125 Network Performance Degeneration in Dynamic Traffic Management

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

 % loop links and define turnflows

 fractions = zeros(1,1:nOut,1:CONSTANTS.Classes);

 for i = 1:nIn

 % space = [inlink(=i) x outlink x class]

 % get split fractions for link i that are possible

 if isempty(turnmatrix)

 fractions(1,1:nOut,1:CONSTANTS.Classes) = ...

 SplitFractions(1,conflicts(n).node.outlinks,:);

 else

 fractions(1,1:nOut,1:CONSTANTS.Classes) = ...

 SplitFractions(1,conflicts(n).node.outlinks,:) .* ...

 turnmatrix(i,:,ones(1,CONSTANTS.Classes));

 % scale to sum = 1 per class

 if sum(fractions) == 0

 fractions = zeros(size(fractions));

 else

 s = sum(fractions,2);

 fractions = fractions./s(:,ones(1,nOut),:);

 fractions(isnan(fractions)) = 0; % 0/0 = nan

 end

 end

 inLink = conflicts(n).node.inlinks(i);

 turnFlows(i,:,:) = PotentialOutflow(inLink,ones(1,nOut),...

 1:CONSTANTS.Classes).*fractions;

 end

 end

 % Apply constraints on the nodes

 % this step will adapt the turn flow matrix , 'None' nodes are skipped

 switch conflicts(n).type

 case 'Controlled'

 % get partial flows

 partialFlows = LCM(sum(turnFlows,3), conflicts(n).node);

 maxPartialFlows = max(partialFlows, [], 3); % [inlink x outlink]

 % loop as long as any constraint is violated

 nConfs = size(conflicts(n).node.conflicts, 3);

 maxRelLoad = inf;

 distrib = [];

 while maxRelLoad > 1

 % calculate conflict demand

 demand = sum(sum(maxPartialFlows(:,:,ones(1,nConfs)) .* ...

 conflicts(n).node.conflicts, 1), 2);

 % calculate reduction factor

 [maxRelLoad inds] = max(demand./conflicts(n).node.capacities);

 reduction = min(1, 1/maxRelLoad);

 % find inlinks of these conflicts (usually only 1 conflict)

 inLinks = sum(sum(conflicts(n).node.conflicts(:,:,inds), 3), 2) > 0;

 % calculate link time allocation

 distrib(inLinks,end+1) = sum(maxPartialFlows(inLinks,:) .* ...

 conflicts(n).node.conflicts(inLinks,:,inds(1)),2) / ...

 demand(inds(1));

 % change all flows from these inlinks

 turnFlows(inLinks,:,:) = reduction*turnFlows(inLinks,:,:);

 maxPartialFlows(inLinks,:) = reduction*maxPartialFlows(inLinks,:);

 end

 % apply reduction by sum of maximum link times

 reduction = min(1, 1/sum(max(distrib,[],2)));

 turnFlows = reduction*turnFlows;

 case 'Uncontrolled'

 % get partial flows

 partialFlows = LCM(sum(turnFlows,3), conflicts(n).node);

 % get turn flows of t-1.5

 prevTurnFlows = .5*conflicts(n).node.prevTurnFlows1 + ...

 .5*conflicts(n).node.prevTurnFlows2;

 % apply reduction per link

 for i = 1:nIn

 reduction = 1;

 % loop lanes

 for j = 1:length(conflicts(n).node.inlink(i).lane)

 % get minor and major groups

 minor = conflicts(n).node.inlink(i).lane(j).minor;

 major = conflicts(n).node.inlink(i).lane(j).major;

 % loop conflict groups

 for c = 1:size(minor,3)

 126 Network Performance Degeneration in Dynamic Traffic Management

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

 % calculate flows

 majorFlow = sum(sum(major(:,:,c).*prevTurnFlows)) / ...

 CONSTANTS.DeltaK; %[pcu/h]

 minorFlow = sum(sum(minor(1,:,c).*partialFlows(i,:,j))) / ...

 CONSTANTS.DeltaK; %[pcu/h]

 % calculate reduction

 capacity = exp(-majorFlow*CONSTANTS.MinGapAcceptance) / ...

 CONSTANTS.AverageHeadway; %[pcu/h]

 reduction = min(reduction, capacity/minorFlow);

 end

 end

 % reduce flows from the link

 turnFlows(i,:,:) = reduction*turnFlows(i,:,:);

 end

 % store for next time step

 store = 'turnflows';

 case 'Roundabout'

 % get turn flows of t-1.5

 prevTurnFlows = .5*conflicts(n).node.prevTurnFlows1 + ...

 .5*conflicts(n).node.prevTurnFlows2;

 % model is type specific

 if ~strcmp(conflicts(n).node.type, 'Turbo')

 % -- 1-Lane / 2-Lane --

 % apply reduction per link

 for i = 1:nIn

 % calculate flows

 Vexit = sum(sum(conflicts(n).node.inlink(i).Vexit.*prevTurnFlows))...

 / CONSTANTS.DeltaK; %[pcu/h]

 Vcirc = sum(sum(conflicts(n).node.inlink(i).Vcirc.*prevTurnFlows))...

 / CONSTANTS.DeltaK; %[pcu/h]

 % get parameters from link, or node if not present

 alpha = conflicts(n).node.inlink(i).alpha;

 if isempty(alpha)

 alpha = conflicts(n).node.alpha;

 end

 beta = conflicts(n).node.beta; % type specific

 gamma = conflicts(n).node.inlink(i).gamma;

 if isempty(gamma)

 gamma = conflicts(n).node.gamma;

 end

 % calculate and apply reduction

 capacity = (1500 - (8/9)*(alpha*Vexit + beta*Vcirc))/gamma;

 capacity = max(capacity, 0); % equilibrium/oscilation

 demand = sum(sum(turnFlows(i,:,:), 3), 2) / CONSTANTS.DeltaK;

 reduction = min(1, capacity/demand);

 turnFlows(i,:,:) = reduction*turnFlows(i,:,:);

 end

 % store for next time step

 store = 'turnflows';

 else

 % -- Turbo --

 % get partial flows

 partialFlows = LCM(sum(turnFlows,3), conflicts(n).node);

 % apply reduction per link

 for i = 1:nIn

 reduction = 1;

 % determine reduction by critical lane

 for j = 1:length(conflicts(n).node.inlink(i).lane)

 % calculate flows

 cmax = min(size(prevTurnFlows,3), ...

 size(conflicts(n).node.inlink(i).lane(j).Vexit,3));
 Vexit = sum(sum(sum(conflicts(n).node.inlink(i).lane(j).Vexit.* ...

 prevTurnFlows(:,:,1:cmax)))) / CONSTANTS.DeltaK; %[pcu/h]

 Vcirc = sum(sum(sum(conflicts(n).node.inlink(i).lane(j).Vcirc.* ...

 prevTurnFlows(:,:,1:cmax)))) / CONSTANTS.DeltaK; %[pcu/h]

 % get parameters from lane

 alpha = conflicts(n).node.inlink(i).lane(j).alpha;

 beta = conflicts(n).node.inlink(i).lane(j).beta;

 gamma = conflicts(n).node.inlink(i).lane(j).gamma;

 % calculate reduction

 capacity = (1500 - (8/9)*(alpha*Vexit + beta*Vcirc))/gamma;

 capacity = max(capacity, 0); % may occur due to V from t-1

 demand = sum(partialFlows(i,:,j)) / CONSTANTS.DeltaK; %[pcu/h]

 reduction = min(reduction, capacity/demand);

 127 Network Performance Degeneration in Dynamic Traffic Management

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

 end

 % apply reduction

 turnFlows(i,:,:) = reduction.*turnFlows(i,:,:);

 partialFlows(i,:,:) = reduction.*partialFlows(i,:,:);

 end

 % store for next time step

 store = 'partialflows';

 end

 case 'Weaving'

 % gather link info

 pre = conflicts(n).node.pre;

 post = conflicts(n).node.post;

 A = pre(1);

 if pre(end) && pre(end) ~= A

 B = pre(end);

 elseif pre(end-1) ~= A

 B = pre(end-1);

 else

 B = []; % diverge section

 end

 C = post(1);

 if post(end) && post(end) ~= C

 D = post(end);

 elseif post(end-1) ~= C

 D = post(end-1);

 else

 D = []; % merge section

 end

 % calculate demand

 demand = [sum(turnFlows(A,C),3) sum(turnFlows(A,D),3); ...

 sum(turnFlows(B,C),3) sum(turnFlows(B,D),3)];

 % prepare taper lane number adjustment

 preTaperAdj = zeros(size(pre));

 if conflicts(n).node.pretaper

 preTaperAdj(pre==C) = -1;

 end

 postTaperAdj = zeros(size(post));

 if conflicts(n).node.posttaper

 postTaperAdj(post==D) = -1;

 end

 % create utility matrix, start with lane changes

 nlanes = length(pre);

 util = zeros(nlanes);

 for i = 1:nlanes

 for j = 1:nlanes

 util(i,j) = abs((i+preTaperAdj(i))-(j+postTaperAdj(j))) * ...

 CONSTANTS.LaneChangeUtil;

 end

 end

 % include taper disutility

 if conflicts(n).node.pretaper

 % deduce first and last lanes of links

 Alast = find(pre==A,1,'last');

 Bfirst = find(pre==B,1,'first');

 util(Alast:Bfirst,:) = util(Alast:Bfirst,:) + CONSTANTS.TaperUtil;

 end

 % exclude lanes that appear/disappear

 util(pre==0,:) = -inf;

 util(:,post==0) = -inf;

 % apply logit

 exps = exp(util);

 flow = zeros(nlanes);

 flow(pre==A,post==C) = demand(1,1) .* exps(pre==A,post==C) ./ ...

 sum(sum(exps(pre==A,post==C)));

 if ~isempty(D)

 flow(pre==A,post==D) = demand(1,2) .* exps(pre==A,post==D) ./ ...

 sum(sum(exps(pre==A,post==D)));

 end

 if ~isempty(B)

 flow(pre==B,post==C) = demand(2,1) .* exps(pre==B,post==C) ./ ...

 sum(sum(exps(pre==B,post==C)));

 end

 if ~isempty(B) && ~isempty(D)

 flow(pre==B,post==D) = demand(2,2) .* exps(pre==B,post==D) ./ ...

 128 Network Performance Degeneration in Dynamic Traffic Management

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

 sum(sum(exps(pre==B,post==D)));

 end

 % calculate lane demand

 laneDemand = zeros(nlanes,1);

 if ~isempty(D) && ~isempty(B) % merges have no weaving traffic

 for i = 2:nlanes-1 % exterior lanes cannot have flow over it

 from_left = (1:nlanes)' + preTaperAdj < i & pre==A;

 to_right = (1:nlanes)' + postTaperAdj > i & post==D;

 from_right = (1:nlanes)' + preTaperAdj > i & pre==B;

 to_left = (1:nlanes)' + postTaperAdj < i & post==C;

 laneDemand(i,1) = CONSTANTS.WeaveFraction * ...

 (sum(sum(flow(from_left,to_right))) + ...

 sum(sum(flow(from_right,to_left))));

 end

 end

 % merge taper lanes

 if conflicts(n).node.pretaper

 flow(Alast,:) = flow(Alast,:) + flow(Bfirst,:);

 laneDemand(Alast,1) = laneDemand(Alast,1) + laneDemand(Bfirst,1);

 flow(Bfirst,:) = [];

 laneDemand(Bfirst,:) = [];

 end

 % calculate reduction

 reduction = min(min(CONSTANTS.WeaveLaneCap*CONSTANTS.DeltaK./ ...

 (sum(flow,2)+laneDemand)), 1);

 % reduce all flows

 turnFlows = reduction*turnFlows;

 end

 % Apply constraints on the outlinks (MaximumInflow)

 if ~isempty(conflicts(n).node.outlinks)

 PotentialInflow = sum(sum(turnFlows,3),1);

 reduction = max(min(min(MaximumInflow(conflicts(n).node.outlinks)'./...

 PotentialInflow), 1), 0);

 turnFlows = reduction*turnFlows;

 % Add to link inflow

 % permute: [1 (sum inlinks), outlink, classes] -> [outlink, 1 (time slice), classes]

 % (transpose respecting 3rd dimension)

 LinkInflow(conflicts(n).node.outlinks,1,:) = permute(sum(turnFlows, 1), [2 1 3]);

 if strcmp(store, 'partialflows')

 partialFlows = reduction*partialFlows;

 end

 end

 if ~isempty(conflicts(n).node.inlinks)

 % Add to link inflow

 % no permute: [outlink, 1 (time slice), classes]

 LinkOutflow(conflicts(n).node.inlinks,1,:) = sum(turnFlows, 2);

 end

 % Apply restrictions as vehicles have been destroyed by the hazard

 LinkOutflow(temporary.AffectedLinks,1,:) = min(LinkOutflow(temporary.AffectedLinks,1,:),...

 permute(temporary.MaxLinkOutflow(temporary.AffectedLinks,:), [1 3 2]) - ...

 temporary.LinkOutflow(temporary.AffectedLinks,column,:));

 % Store for next time step

 if strcmp(store, 'turnflows')

 conflicts(n).node.prevTurnFlows2 = conflicts(n).node.prevTurnFlows1;

 conflicts(n).node.prevTurnFlows1 = sum(turnFlows,3);

 elseif strcmp(store, 'partialflows')

 conflicts(n).node.prevTurnFlows2 = conflicts(n).node.prevTurnFlows1;

 conflicts(n).node.prevTurnFlows1 = partialFlows;

 end

end

% Deduce partial flows from lanemaps and turn flows

function partialFlows = LCM(turnFlows, node)

% This function actually performs the 2nd splitter and the assignment. The

% first splitter is allraedy performed. The dimensions of the partial flows

% will be: [inlink, outlink, lane]

turnFlows(turnFlows<0) = 0; % tiny rounding errors around 0

partialFlows = zeros(length(node.inlinks), length(node.outlinks), 0);

% Loop the inlinks of the node

for i = 1:length(node.inlink)

 flows = [];

 129 Network Performance Degeneration in Dynamic Traffic Management

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

 lanemap = node.inlink(i).lanemap;

 for s = 1:length(node.inlink(i).laneSplits)-1

 l1 = node.inlink(i).laneSplits(s);

 l2 = node.inlink(i).laneSplits(s+1)-1;

 f1 = node.inlink(i).flowSplits(s);

 f2 = node.inlink(i).flowSplits(s+1)-1;

 % get flows from this link [outlink x lane];

 flows(f1:f2,l1:l2) = zeroSplitter(lanemap(f1:f2,l1:l2), ...

 turnFlows(i,node.inlink(i).order(f1:f2))', zeros(f2-f1+1,l2-l1+1));

 end

 % permute: [outlink, lane] -> [1 (inlink), outlink, lane]

 partialFlows(i,node.inlink(i).order,1:size(flows,2)) = ...

 permute(flows, [3 1 2]);

end

% Split if lane not used

function flows = zeroSplitter(map, dirflows, flows)

% one lane means no choice

if size(map,2) == 1

 flows = dirflows;

 return

end

% assign flows regardless of the possiblitity of negative flows

tempflows = assign(map, dirflows, flows);

% double precision may result in -1e16 while should be zero

[i, j] = find(tempflows==min(min(tempflows)) & tempflows<-1e-15, 1);

if ~isempty(i)

 % negative flows found, split at most negative

 if j+1 <= size(map,2) && map(i,j+1) == 1

 % (last turn flow i on lane j) < 0, next lane is next group

 j = j+1;

 else

 % (last lane j of turn flow i) < 0, next flow is next group

 i = i+1;

 end

 % re-assign before part

 flows(1:i-1,1:j-1) = zeroSplitter(map(1:i-1,1:j-1), dirflows(1:i-1), flows(1:i-1,1:j-1));

 % re-assign after part

 flows(i:end,j:end) = zeroSplitter(map(i:end,j:end), dirflows(i:end), flows(i:end,j:end));

else

 % assigned flows are all positive

 flows = tempflows;

end

% Assigns flows to the lanes

function flows = assign(map, dirflows, flows)

% average flow per lane (is actual flow per lane if dependency holds)

avelaneflow = sum(dirflows)./size(map,2);

i = find(map(:,1),1,'first'); % there may be impossible turn flows

j = 1;

% deduce first elements

if size(map,1) > i && map(i+1,1) == 1

 % first entry is the first flow as the first flow can only use one lane

 flows(i,j) = dirflows(i);

 i = i+1;

elseif size(map,2) > 1 && map(i,j+1) == 1

 % first entry is aveflow as the first lane has only 1 flow

 flows(i,j) = avelaneflow;

 j = j+1;

end

% add extra row and column to the map to avoid range checks

map(end+1,end+1) = 0;

% walk through the map

while i < size(map,1) && j < size(map,2)

 if map(i,j+1) == 0 && map(i+1,j) == 0

 % we have reached the extra row or column, we can either assign the

 % directional flow remainder or average lane flow remainder (is

 % equal)

 flows(i,j) = avelaneflow - sum(flows(1:i,j));

 i = i+1;

 j = j+1;

 elseif map(i,j+1) == 1

 % next step is a new lane, this flow gets average lane flow remainder

 flows(i,j) = avelaneflow - sum(flows(1:i,j));

 j = j+1;

 130 Network Performance Degeneration in Dynamic Traffic Management

433

434

435

436

437

438

 else

 % next step is a new flow, this lane gets directional flow remainder

 flows(i,j) = dirflows(i) - sum(flows(i,1:j));

 i = i+1;

 end

end

Node Input Generator

The Node Input Generator is in total 2182 lines of code. Much of this

code is related to graphical elements and is not related to the actual

generation of groups, which is the core of the program. The conflict

group generation sub function (genGroups) will be shown, together

with the used sub functions.

001

002

003

004

005

006

007

008

009

010

011

012

013

014

015

016

017

018

019

020

021

022

023

024

025

026

027

028

029

030

031

032

033

034

035

036

037

038

039

040

041

042

043

044

045

046

047

048

049

050

051

052

053

054

055

056

function genGroups(src, evt)

% apply lane maps to turn matrix

fig = gcbf;

udat = get(fig, 'UserData');

type = get(findobj(fig, 'Tag', 'nodeType'), 'UserData');

if (strcmp(type, 'Controlled') || strcmp(type, 'Uncontrolled or priority')) && ...

 get(findobj(fig, 'Tag', 'uselanemaps'), 'Value') == 1

 [udat ok] = lanemaps2turnmatrix(udat);

 if ~ok

 return

 end

end

% empty lanemap if all movements are possible

if get(findobj(fig, 'Tag', 'allmatrix'), 'Value') == 1

 udat.node.turnmatrix = [];

end

% based on the type, generate groups (and maybe some parameters)

switch type

 case {'None', 'Weaving section'}

 % no groups

 case 'Controlled'

 % gather intersecting turnflows

 Uturn = false; % exclude U-turns (permitted conflict)

 crosses = getCrosses(udat, Uturn);

 % initiate conflicts

 conflicts = zeros(length(udat.inlink), length(udat.outlink), 0);

 foundany = true; % while loop

 prev_groups = crosses; % previous loop groups, start with 2-conflicts

 % waitbar tracking

 h = waitbar(0,'');

 g = 2; % group size

 hc = 0; % waitbar update counter

 while foundany

 % update waitbar

 g = g+1;

 waitbar(0,h,['Creating ' num2str(g) '-phase groups']);

 % initialize loop

 foundany = false; % get out of while loop unless it is changed

 cur_groups = zeros(length(udat.inlink), length(udat.outlink), 0);

 had = false(size(prev_groups,3),1); % had groups = subgroups

 % Loop previous groups

 for i = 1:size(prev_groups,3)

 % update waitbar, works per group size from 0 to 1

 hc = hc+1;

 if hc == 20

 waitbar(i/size(prev_groups,1),h)

 hc = 0;

 end

 % Per previous group, loop previous groups further along

 for j = i+1:size(prev_groups,3)

 % get the non-matching turn flows

 group1 = prev_groups(:,:,i);

 group2 = prev_groups(:,:,j);

 tf1 = (group1-group1.*group2);

 tf2 = (group2-group1.*group2);

 if sum(sum(tf1))~=1 || sum(sum(tf2))~=1

 131 Network Performance Degeneration in Dynamic Traffic Management

057

058

059

060

061

062

063

064

065

066

067

068

069

070

071

072

073

074

075

076

077

078

079

080

081

082

083

084

085

086

087

088

089

090

091

092

093

094

095

096

097

098

099

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

 % per group 1 should not match, skip otherwise

 continue

 end

 % is this combination a conflict?

 this = getConflict(tf1|tf2, crosses);

 if any(this)

 foundany = true;

 % find sub groups

 these = getConflict(group1|group2, prev_groups);

 had(these) = true;

 % find duplicates

 these = getConflict(group1|group2, cur_groups);

 if ~any(these)

 % only add if not present allready

 cur_groups(:,:,end+1) = group1|group2;

 end

 end

 end

 end

 % if any prev_group is not part of a current group, keep it

 if any(~had)

 conflicts = cat(3, conflicts, prev_groups(:,:,~had));

 end

 % prepare for next loop

 prev_groups = cur_groups;

 end

 % capacities, determine right turns

 waitbar(1,h,'Determining capacities');

 rightTurns = zeros(length(udat.inlink), length(udat.outlink));

 for i = 1:length(udat.inlink)

 minang = inf;

 lanemap = udat.inlink(i).lanemap;

 % find outlink closest to the right

 for j = 1:length(udat.outlink)

 if udat.inlink(i).angle == udat.outlink(j).angle

 continue

 end

 ang = 360-innerAngle(udat.inlink(i).angle, udat.outlink(j).angle);

 if ang < minang;

 minang = ang;

 right = j;

 end

 end

 % search for inlink from the right that is closer

 for j = 1:length(udat.inlink)

 if udat.inlink(i).angle == udat.inlink(j).angle

 continue

 end

 ang = 360-innerAngle(udat.inlink(i).angle, udat.inlink(j).angle);

 if ang < minang

 % no right turn as inlink is closer

 right = [];

 end

 end

 % does the right turn have dedicated lanes only?

 if any(sum(lanemap(:,lanemap(end,:)>0),1) > 1)

 % their is a shared lane

 right = [];

 end

 % store dedicated right turns

 if ~isempty(right)

 rightTurns(i,right) = 1;

 end

 end

 maxConf = max(sum(sum(conflicts,1),2));

 capacities = ones(1,1,size(conflicts,3));

 for c = 1:size(conflicts,3)

 if sum(sum(conflicts(:,:,c) .* rightTurns)) > 0 && ...

 sum(sum(conflicts(:,:,c),1),2) < maxConf;

 % no right turn, this conflict can only use a fraction of time

 capacities(1,1,c) = (maxConf + sum(sum(conflicts(:,:,c),1),2)) / (2*maxConf);

 end

 end

 if ishandle(h)

 delete(h) % delete waitbar

 132 Network Performance Degeneration in Dynamic Traffic Management

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

 end

 % store conflicts

 udat.node.conflicts = conflicts;

 udat.node.capacities = capacities;

 msgbox([num2str(size(conflicts, 3)) ' conflict groups generated.'])

 case 'Uncontrolled or priority'

 % gather intersecting turnflows

 Uturn = true; % include U-turns

 crosses = getCrosses(udat, Uturn);

 % create waitbar

 h = waitbar(0,'');

 % group counter (information for user only)

 ngroups = 0;

 % Loop the inlinks

 for i1 = 1:length(udat.inlink)

 % update waitbar

 waitbar(i1/length(udat.inlink), h, ['Creating minor/major groups for link '...

 num2str(i1) ' of ' num2str(length(udat.inlink))])

 % we need a lanemap

 if isempty(udat.inlink(i1).lanemap)

 errordlg(['Link ' num2str(i1) ' does not have a lanemap.'], '')

 delete(h)

 return

 end

 % find major flows of all turn flows from i1

 for j1 = 1:length(udat.outlink)

 % initiate majors matrix of flows towards j1

 majors(:,:,j1) = zeros(length(udat.inlink), length(udat.outlink));

 % loop inlinks to find major flows

 for i2 = 1:length(udat.inlink)

 if i2 == i1

 continue % major flow not from the same link

 end

 % loop outlinks to find major flows

 for j2 = 1:length(udat.outlink)

 % i1-j1 conflicting with i2-j2?

 comb = zeros(length(udat.inlink),length(udat.outlink));

 comb(i1, j1) = 1;

 comb(i2, j2) = 1;

 this = getConflict(comb, crosses);

 if ~isempty(find(this,1))

 if udat.inlink(i1).priority && ~udat.inlink(i2).priority

 % i2-j2 is not major

 elseif ~udat.inlink(i1).priority && udat.inlink(i2).priority

 % i2-j2 is major

 majors(i2,j2,j1) = 1; % *)

 else

 % both priority or both not, major if from the right

 ai1 = udat.inlink(i1).angle;

 aj1 = udat.outlink(j1).angle;

 ai2 = udat.inlink(i2).angle;

 ai1_j1 = innerAngle(aj1, ai1); % angle between in1 and out1

 if ai1_j1 == 0

 ai1_j1 = 360;

 end

 ai1_i2 = innerAngle(ai2, ai1); % angle between in1 and in2

 if ai1_i2 < ai1_j1 % in2 comes from the right

 % i2-j2 is major

 majors(i2,j2,j1) = 1; % *)

 end

 end

 % *) i2-j2 is a major turn flow for flow from

 % the current link i1 towards j1

 end

 end

 end

 end

 % loop lanes at link i1

 for i = 1:size(udat.inlink(i1).lanemap, 2)

 % initiate minor and major for this lane

 minor = zeros(1,length(udat.outlink),0);

 major = zeros(length(udat.inlink),length(udat.outlink),0);

 % get available turns from the turn lane

 turns = find(udat.inlink(i1).lanemap(:,i));

 order = udat.inlink(i1).order;

 133 Network Performance Degeneration in Dynamic Traffic Management

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

 % find groups of size j = 1, 2, 3 etc. partial flows

 for j = 1:length(turns)

 % get all combinations of size j

 group_minors = nchoosek(turns,j);

 % loop partial groups and find common majors

 for g = 1:size(group_minors,1)

 % assume all majors

 group_majors = ones(length(udat.inlink), length(udat.outlink));

 % loop minors in group

 for p = 1:size(group_minors,2)

 % major only if major for all

 these_majors = majors(:,:,order(group_minors(g,p)));

 group_majors = group_majors & these_majors;

 end

 % keep non-empty groups

 if sum(sum(group_majors)) > 0

 these_minors = zeros(1,length(udat.outlink),1);

 these_minors(order(group_minors(g,:))) = 1;

 minor = cat(3, minor, these_minors);

 major = cat(3, major, group_majors);

 ngroups = ngroups+1;

 end

 end

 end

 % delete groups that are a subset of others

 these = true(1, size(minor, 3));

 for j = 1:size(minor, 3)

 others = 1:size(minor, 3);

 others(j) = [];

 ind1 = getConflict(minor(:,:,j), minor(:,:,others));

 ind2 = getConflict(major(:,:,j), major(:,:,others));

 these(ind1&ind2) = false;

 end

 minor = minor(:,:,these);

 major = major(:,:,these);

 % store groups per lane

 udat.inlink(i1).lane(i).minor = minor;

 udat.inlink(i1).lane(i).major = major;

 end

 end

 delete(h)

 msgbox([num2str(ngroups) ' conflict groups generated.'])

 case 'Roundabout'

 % get roundabout type

 rtype = get(findobj(fig, 'Tag', 'rounType'), 'UserData');

 switch rtype

 case {'1-Lane', '2-Lane'}

 % Loop inlink to generate parameters for

 for i1 = 1:length(udat.inlink)

 % initiate Vexit

 Vexit = zeros(length(udat.inlink), length(udat.outlink));

 % find nearest outlink (to the left)

 i1a = udat.inlink(i1).angle;

 minang = inf;

 % loop outlinks to find nearest

 for j = 1:length(udat.outlink)

 ja = udat.outlink(j).angle;

 ang = innerAngle(i1a, ja);

 if ang < minang

 minang = ang;

 exit = j;

 end

 end

 % loop inklinks to see if any is actually closer

 for j = 1:length(udat.inlink)

 if i1 == j

 continue % not the same link

 end

 ja = udat.inlink(j).angle;

 ang = innerAngle(i1a, ja);

 if ang < minang

 exit = []; % no exit flow is closest link is an inlink

 end

 end

 % all flow to the exit link is exit flow

 134 Network Performance Degeneration in Dynamic Traffic Management

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

 if ~isempty(exit)

 Vexit(:,exit) = 1;

 end

 % initiate Vcirc

 Vcirc = zeros(length(udat.inlink), length(udat.outlink));

 % loop inlinks to get turnflows

 for i2 = 1:length(udat.inlink)

 i2a = udat.inlink(i2).angle;

 % loop outlinks to get turnflows

 for j2 = 1:length(udat.outlink)

 j2a = udat.outlink(j2).angle;

 ang1 = 360-innerAngle(i2a, i1a); % angle to the right

 ang2 = 360-innerAngle(i2a, j2a); % angle to the right

 if ang1 < ang2

 % turnflow goes past inlink

 Vcirc(i2, j2) = 1;

 end

 end

 end

 % store per link

 udat.inlink(i1).Vexit = Vexit;

 udat.inlink(i1).Vcirc = Vcirc;

 end

 msgbox('Vexit and Vcirc generated for all inlinks.', '')

 case 'Turbo'

 % Get all nodes and links from the plot

 ax = findobj(fig, 'Tag', 'rounTurboAxes');

 allLines = findobj(ax, 'Type', 'line');

 m = get(allLines, 'Marker');

 % get links (without marker)

 linkObjs = allLines(strcmp(m, 'none'));

 if length(linkObjs) <= 1

 msgbox('Please draw the roundabout first.')

 return

 end

 % get nodes by the tag

 originObjs = findobj(ax, '-regexp', 'Tag', 'origin');

 destinationObjs = findobj(ax, '-regexp', 'Tag', 'destination');

 roundaboutObjs = findobj(ax, '-regexp', 'Tag', 'roundabout');

 % store links with the XY coordinates

 objs.links = [cell2mat(get(linkObjs, 'XData')),...

 cell2mat(get(linkObjs, 'YData'))];

 % set right order (against the clock)

 for l = 1:size(objs.links,1)

 x1 = objs.links(l,1);

 x2 = objs.links(l,2);

 y1 = objs.links(l,3);

 y2 = objs.links(l,4);

 ang1 = getAng(x1, y1);

 ang2 = getAng(x2, y2);

 ang = 360-innerAngle(ang1, ang2); % angle to the right

 if ang > 180

 % no link can span more than 180 degrees, must be

 % the other way around

 objs.links(l, :) = [x2 y2 x1 y1];

 else

 objs.links(l, :) = [x1 y1 x2 y2];

 end

 set(linkObjs(l), 'Color', [1 0 0])

 p = plot(objs.links(l, 1), objs.links(l, 2), 'Marker', '.');

 delete(p)

 set(linkObjs(l), 'Color', [0 0 0])

 end

 % store nodes with the XY coordinates

 objs.origins = [cell2mat(get(originObjs, 'XData')),...

 cell2mat(get(originObjs, 'YData'))];

 objs.destinations = [cell2mat(get(destinationObjs, 'XData')),...

 cell2mat(get(destinationObjs, 'YData'))];

 objs.roundabouts = [cell2mat(get(roundaboutObjs, 'XData')),...

 cell2mat(get(roundaboutObjs, 'YData'))];

 % Loop inlinks

 h = waitbar(0, '');

 for i = 1:length(udat.inlink)

 % update waitbar

 waitbar(i/length(udat.inlink), h, ['Generating lanemap, ',...

 135 Network Performance Degeneration in Dynamic Traffic Management

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

 'Beta''s, Vexit''s & Vcirc''s for link ' num2str(i)])

 % Loop lanes of link i

 nlanes = length(findobj(originObjs, 'Tag', ['origin' num2str(i)]));

 % initiate lanemap

 lanemap = zeros(length(udat.outlink), nlanes);

 for l = 1:nlanes

 % find origin node

 for n = 1:length(originObjs)

 % link and lane number in the userdata

 dat = get(originObjs(n), 'UserData');

 if dat.inlink == i && dat.lane == l

 % node found, n stays at current value

 break

 end

 end

 % == lanemap ==

 % move downstream

 [origins, destinations, roundabouts] = ...

 getNodes('down', objs, objs.origins(n,:), []);

 if isempty(roundabouts)

 % origin not connected properly

 errordlg('An origin node is not connected to the roundabout')

 delete(h)

 return

 end

 % get stop nodes at this crossection

 % find onject

 obj = findobj(roundaboutObjs, 'XData', roundabouts(1,1),...

 'YData', roundabouts(1,2));

 % find objects with the same tag

 groupobjs = findobj(roundaboutObjs, 'Tag', get(obj, 'Tag'));

 % get XY coordinates

 if length(groupobjs) == 1

 stopnodes = [get(groupobjs, 'XData') get(groupobjs, 'YData')];

 else

 stopnodes = [cell2mat(get(groupobjs, 'XData')),...

 cell2mat(get(groupobjs, 'YData'))];

 end

 % Travel downstream in a loop

 % lanemap is from left to right, links will be found

 % in opposite order, start counter at the right

 n_out = length(udat.outlink)+1;

 ok = true; % keep on looping

 while ok

 % Find exit link that may not be accessible to

 % update exit link counter

 % find object of first roundabout node

 obj = findobj(roundaboutObjs, 'XData', roundabouts(1,1),...

 'YData', roundabouts(1,2));

 % find all objects in this set

 groupobjs = findobj(roundaboutObjs, 'Tag', get(obj, 'Tag'));

 % get XY coordinates

 if length(groupobjs) == 1

 r_nodes = [get(groupobjs, 'XData') get(groupobjs, 'YData')];

 else

 r_nodes = [cell2mat(get(groupobjs, 'XData')),...

 cell2mat(get(groupobjs, 'YData'))];

 end

 % move downstream from this set

 [origins2, destinations2, roundabouts2] = ...

 getNodes('down', objs, r_nodes, []);

 if ~isempty(destinations2)

 n_out = n_out-1; % exit link is found, adapt lane counter

 end

 % Find actual downstream nodes

 [origins, destinations, roundabouts] = ...

 getNodes('down', objs, roundabouts, stopnodes);

 if ~isempty(destinations)

 % exit accessible from lane l

 lanemap(n_out,l) = 1;

 end

 % stop loop as dead ends (stop nodes) are found

 if isempty(roundabouts)

 ok = false;

 end

 136 Network Performance Degeneration in Dynamic Traffic Management

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

 end

 % create order array

 order = 1:length(udat.outlink);

 order = [order(i:end) order(1:i-1)]; % shift

 % == Vcirc ==

 % get downstream nodes

 [origins, destinations, roundabouts] = ...

 getNodes('down', objs, objs.origins(n,:), []);

 % find objects in this set

 obj = findobj(roundaboutObjs, 'XData', roundabouts(1,1),...

 'YData', roundabouts(1,2));

 groupobjs = findobj(roundaboutObjs, 'Tag', get(obj, 'Tag'));

 % get XY coordinates as stopnodes

 if length(groupobjs) == 1

 stopnodes = [get(groupobjs, 'XData') get(groupobjs, 'YData')];

 else

 stopnodes = [cell2mat(get(groupobjs, 'XData')),...

 cell2mat(get(groupobjs, 'YData'))];

 end

 % find all right-hand nodes as these also cross

 r_all = sqrt(stopnodes(:,1).^2+stopnodes(:,2).^2);

 r_linked = min(sqrt(roundabouts(:,1).^2+roundabouts(:,2).^2));

 roundabouts = stopnodes(r_linked<=r_all,:);

 % store these nodes as they are also needed for Vexit

 rgroup = roundabouts;

 % travel upstream 1 roundabout set

 [origins, destinations, roundabouts] = ...

 getNodes('up', objs, roundabouts, []);

 % the number of roundabout lanes here determines beta

 beta = size(roundabouts,1);

 % initiate Vcirc

 Vcirc = zeros(length(udat.inlink),length(udat.outlink),0);

 % keep track of available outlinks

 out_links = true(1,length(udat.outlink));

 % travel further upstream

 ok = true;

 while ok

 % move upstream

 [origins, destinations, roundabouts] = ...

 getNodes('up', objs, roundabouts, stopnodes);

 % add these origin nodes to partial flows

 if ~isempty(origins)

 for o = 1:size(origins,1)

 % find object and its data

 obj = findobj(originObjs, 'XData', origins(o,1),...

 'YData', origins(o,2));

 dat = get(obj, 'UserData');

 % out_links may include impossible

 % turns from dat.inlink, these flows

 % are zero anyway

 Vcirc(dat.inlink, out_links, dat.lane) = 1;

 end

 end

 if ~isempty(roundabouts)

 % move downstream and find destinations,

 % these may not be destinations of any

 % partial flow to be found later as flow

 % does not pass the current link

 [origins2, destinations2, roundabouts2] = ...

 getNodes('down', objs, roundabouts, []);

 if ~isempty(destinations2)

 % find object and its data

 obj = findobj(destinationObjs, 'XData', ...

 destinations2(1,1), 'YData', destinations2(1,2));

 dat = get(obj, 'UserData');

 out_links(dat.outlink) = false;

 end

 else

 % stop if no roundabout nodes anymore

 ok = false;

 end

 end

 % store per lane

 udat.inlink(i).lane(l).Vcirc = Vcirc;

 % == Vexit ==

 137 Network Performance Degeneration in Dynamic Traffic Management

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

 % data from Vcirc can be used

 roundabouts = rgroup;

 % move upstream

 [origins, destinations, roundabouts] = ...

 getNodes('up', objs, roundabouts, []);

 % find set as stopnodes

 if ~isempty(roundabouts)

 obj = findobj(roundaboutObjs, 'XData', roundabouts(1,1),...

 'YData', roundabouts(1,2));

 groupobjs = findobj(roundaboutObjs, 'Tag', get(obj, 'Tag'));

 if length(groupobjs) == 1

 stopnodes = [get(groupobjs, 'XData'),...

 get(groupobjs, 'YData')];

 else

 stopnodes = [cell2mat(get(groupobjs, 'XData')),...

 cell2mat(get(groupobjs, 'YData'))];

 end

 else

 % roundabout apparently not a full circle, thus

 % no need for stopnodes

 stopnodes = [];

 end

 % move upstream

 [origins, destinations, roundabouts] = ...

 getNodes('up', objs, roundabouts, []);

 % move downstream once to find exit nodes

 [origins, destinations, roundabouts] = ...

 getNodes('down', objs, roundabouts, []);

 % get exit link number through the node object

 out_link = false(1,length(udat.outlink));

 if ~isempty(destinations)

 obj = findobj(destinationObjs, 'XData', destinations(1,1),...

 'YData', destinations(1,2));

 dat = get(obj, 'UserData');

 out_link(dat.outlink) = true;

 end

 % travel upstream 1 roundabout set

 [origins, destinations, roundabouts] = ...

 getNodes('up', objs, destinations, []);

 % initiate Vexit

 Vexit = zeros(length(udat.inlink),length(udat.outlink),0);

 % travel further upstream

 ok = true;

 while ok

 % move upstream

 [origins, destinations, roundabouts] = ...

 getNodes('up', objs, roundabouts, stopnodes);

 % add these origin nodes to partial matrix

 if ~isempty(origins)

 for o = 1:size(origins,1)

 % find object and its data

 obj = findobj(originObjs, 'XData', origins(o,1),...

 'YData', origins(o,2));

 dat = get(obj, 'UserData');

 % add in partial matrix

 Vexit(dat.inlink, out_link, dat.lane) = 1;

 end

 end

 % stop if no roundabout nodes left

 if isempty(roundabouts)

 ok = false;

 end

 end

 % store Vexit and beta per link

 udat.inlink(i).lane(l).Vexit = Vexit;

 udat.inlink(i).lane(l).beta = beta;

 end

 % store lanemap and inlink order per link

 if any(sum(lanemap,1) == 0)

 errordlg(['Some lanes are a dead end at link ' num2str(i) '.']);

 delete(h)

 return

 end

 udat.inlink(i).lanemap = lanemap;

 udat.inlink(i).order = order;

 138 Network Performance Degeneration in Dynamic Traffic Management

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

 end

 % delete waitbar

 delete(h)

 % translate generated lanemaps to turn matrix

 [udat ok] = lanemaps2turnmatrix(udat);

 if ~ok

 return

 end

 if any(sum(udat.node.turnmatrix, 1) == 0)

 errordlg('Some inlinks are a dead end')

 return

 end

 if any(sum(udat.node.turnmatrix, 2) == 0)

 errordlg('Some outlinks are unreachable')

 return

 end

 end

end

set(fig, 'UserData', udat)

% Translate lanemaps to turnmatrix

function [udat ok] = lanemaps2turnmatrix(udat)

ok = true; % status for lane map existance

% initiate turnmatrix

udat.node.turnmatrix = zeros(length(udat.inlink), length(udat.outlink));

% loop the links

for i = 1:length(udat.inlink)

 if isempty(udat.inlink(i).lanemap)

 errordlg(['Link ' num2str(i) ' does not have a lanemap.'], '')

 ok = false;

 return

 end

 % get turns in lanemap and select indices from the corresponding link order

 these = sum(udat.inlink(i).lanemap,2) > 0;

 udat.node.turnmatrix(i,udat.inlink(i).order(these)) = 1;

end

if sum(sum(udat.node.turnmatrix)) == length(udat.inlink)*length(udat.outlink)

 % all movements defined in the lane maps

 udat.node.turnmatrix = [];

end

% Find conflicting turnflows

function crosses = getCrosses(udat, Uturn)

d = 1; % deviation between in- and outlinks in degrees

maxUturnAngle = 2; % degrees, excluding d, otherwise just another link

% initiate crosses

crosses = zeros(length(udat.inlink), length(udat.outlink), 0);

% loop inlinks

for i1 = 1:length(udat.inlink)

 ai1 = udat.inlink(i1).angle - d;

 x11 = sind(ai1);

 y11 = cosd(ai1);

 % loop outlinks

 for j1 = 1:length(udat.outlink)

 aj1 = udat.outlink(j1).angle + d;

 if innerAngle(ai1, aj1) <= maxUturnAngle + 2*d && ~Uturn

 continue % exclude U-turn

 end

 if ~isempty(udat.node.turnmatrix) && udat.node.turnmatrix(i1,j1) == 0

 continue % impossible movement

 end

 x12 = sind(aj1);

 y12 = cosd(aj1);

 % straight line coefficients

 b1 = (y12-y11)/(x12-x11);

 a1 = y11 - b1*x11;

 % loop inlinks again

 for i2 = 1:length(udat.inlink)

 ai2 = udat.inlink(i2).angle - d;

 if ai1 == ai2

 continue % not from same link

 end

 x21 = sind(ai2);

 y21 = cosd(ai2);

 % loop outlinks again

 139 Network Performance Degeneration in Dynamic Traffic Management

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

 for j2 = 1:length(udat.outlink)

 aj2 = udat.outlink(j2).angle + d;

 if innerAngle(ai2, aj2) <= maxUturnAngle + 2*d && ~Uturn

 continue % exclude U-turn

 end

 if ~isempty(udat.node.turnmatrix) && udat.node.turnmatrix(i2,j2) == 0

 continue % impossible movement

 end

 x22 = sind(aj2);

 y22 = cosd(aj2);

 % straight line coefficients

 b2 = (y22-y21)/(x22-x21);

 a2 = y21 - b2*x21;

 % find intersecting point

 if isinf(b1) && isinf(b2)

 % parallel

 continue

 elseif isinf(b1)

 x = x11;

 y = a2 + b2*x;

 elseif isinf(b2)

 x = x21;

 y = a1 + b1*x;

 else

 x = (a1-a2)/(b2-b1);

 y = a1+b1*x;

 end

 p = 1000000000; % precision factor, their may be very tiny rouding issues

 if round(sqrt(x^2+y^2)*p)/p <= 1

 % find duplicates

 this_conflict = zeros(length(udat.inlink), length(udat.outlink));

 this_conflict(i1, j1) = 1;

 this_conflict(i2, j2) = 1;

 ind = getConflict(this_conflict, crosses);

 if ~any(find(ind,1))

 % add if unique

 crosses(i1, j1, end+1) = 1;

 crosses(i2, j2, end) = 1;

 end

 end

 end

 end

 end

end

% Return conclicts, if any

function ind = getConflict(cur, conflicts)

% return indices c where conflicts(:,:,c) is subset of cur(:,:)

% get x and y indices

a = find(cur);

x = rem(a,size(conflicts,1));

x(x==0) = size(conflicts,1);

y = (a-x)/size(conflicts,1) + 1;

% loop conflicts and set cur elements to zero

for c = 1:length(a)

 conflicts(x(c), y(c), :) = 0;

end

% subsets have no elements left (sum = 0)

ind = sum(sum(conflicts, 1), 2) == 0;

% Move upstream or downstream along turbo roundabout map

function [origins, destinations, roundabouts] = getNodes(direction, objs, nodes, stopnodes)

origins = [];

destinations = [];

roundabouts = [];

% get indices: links go from 1,2 to 3,4; movements may go the other way

switch direction

 case 'up'

 from = [3 4];

 to = [1 2];

 case 'down'

 from = [1 2];

 to = [3 4];

end

% remove links to stopnodes

 140 Network Performance Degeneration in Dynamic Traffic Management

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

for n = 1:size(stopnodes, 1)

 objs.links(objs.links(:,to(1))==stopnodes(n,1) &...

 objs.links(:,to(2))==stopnodes(n,2), :) = [];

end

% keep links from a current node

these = false(size(objs.links, 1),1);

for n = 1:size(nodes, 1)

 these = these | (objs.links(:,from(1))==nodes(n,1) &...

 objs.links(:,from(2))==nodes(n,2));

end

objs.links = objs.links(these,:);

% find other nodes per node

for n = 1:size(nodes, 1)

 for l = 1:size(objs.links, 1)

 these = objs.origins(:,1)==objs.links(l,to(1)) & ...

 objs.origins(:,2)==objs.links(l,to(2));

 origins = [origins; objs.origins(these,:)];

 these = objs.destinations(:,1)==objs.links(l,to(1)) & ...

 objs.destinations(:,2)==objs.links(l,to(2));

 destinations = [destinations; objs.destinations(these,:)];

 these = objs.roundabouts(:,1)==objs.links(l,to(1)) & ...

 objs.roundabouts(:,2)==objs.links(l,to(2));

 roundabouts = [roundabouts; objs.roundabouts(these,:)];

 end

end

% keep unique only

origins = unique(origins, 'rows');

destinations = unique(destinations, 'rows');

roundabouts = unique(roundabouts, 'rows');

