
 

 

Network Performance 
Degeneration in 
Dynamic Traffic 
Assignment 
 

With Applications to Evacuation Modelling 
 
Wouter J. Schakel 
 
August 2009 

 



 



 Ministerie van Verkeer en Waterstaat  opq 

 

 

 

 

 

 

 

Network Performance 

Degeneration in 

Dynamic Traffic 

Assignment 

 

 
With Applications to Evacuation Modelling 
 

 

Wouter J. Schakel 

 

August 2009 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MSc Thesis Transport & Planning 

Delft University of Technology 



 
 
 

 

 

 
 i  Network Performance Degeneration in Dynamic Traffic Management  

 

 

 

 

 

 

 

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Colophon 
 

Published by: ITS Edulab, Delft 

ITS Edulab is a cooperation between the Rijkswaterstaat centre for 

Transport and Navigation and the Delft University of Technology 

 

Information: Henk Taale 

Email: Henk.Taale@rws.nl 

 

Author: Wouter J. Schakel 

 Delft University of Technology 

 Master Transport & Planning 

 

Graduation 

committee: 

Prof. Dr. Ir. Serge P. Hoogendoorn 

Committee chairman  

Delft University of Technology 

Faculty of Civil Engineering and Geosciences 

 Ir. Olga Huibregtse 

Delft University of Technology 

Faculty of Civil Engineering and Geosciences 

 Prof. Dr. Ir. John Stoop 

Delft University of Technology 

Faculty of Aerospace Engineering 

 Ir. Marco Schreuder 

Rijkswaterstaat, Centre for Transport and Navigation 

 Ir. Ydo de Vries 

Rijkswaterstaat, Centre for Transport and Navigation 

 

Date: August 2009 

 

Status: Final report 

 

  

 



 
 
 

 

 

 
 ii  Network Performance Degeneration in Dynamic Traffic Management  

 Summary 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

EVAQ is a traffic model for ex-ante evaluations of evacuations plans. 

The model is still in development and it is uncertain whether EVAQ will 

accurately model network performance degeneration. At the same time 

it can be said that accurate network performance degeneration is very 

important for evacuations. The research of this thesis identifies that 

there are phenomena that contribute to network performance 

degeneration that are not modelled. Two important phenomena that 

are not included are the flow degeneration as soon as links become 

congested and the constraints that nodes (intersections) themselves 

have. Several general ideas were thought up to implement these 

phenomena. A selection was made on the basis of accuracy. 

 

Flow degeneration as soon as a link becomes congested has to do with 

the link model. The link model determines what number of vehicles can 

potentially enter and leave the link within a time step. In order to 

accurately determine these, the framework of Cell Based Queuing is 

developed. It represents the queue on a link as a set of cells that are 

related to successive time steps in the past. The theory of kinematic 

waves is applied which explains that in congestion the traffic states 

move upstream. Traffic states in the cells can thus be determined using 

the link outflow from the past. Link inflow is determined by the 

remaining storage capacity on the link. As an addition to the theory of 

kinetic waves, the cell at the end of the link is governed by saturation 

flow rather than kinematic waves. This implicitly applies a capacity 

drop. 

 

A newly developed node model evaluates constraints on the nodes. The 

new node model is a combination of these constraints and the 

constraints by link inflow that are already evaluated. The node model 

exists out of several sub models that are used for different node types. 

The controlled intersection model deals with combined use of conflict 

areas and the effect of green phases. The uncontrolled intersection 

model is based on a capacity formula that determines the capacity for a 

minor flow based on a major flow. The formula is used in a framework 

that relates all flows on the intersection. For roundabouts an existing 

model by Cetur (1986) is used. A similar framework is put in place to 

relate all flows over the roundabout. The model is adapted to work on 

lane level rather than link level for turbo roundabouts. For weaving 

sections, on-ramps and off-ramps a new model is developed that looks 

at lane specific demand. 

 

The new model needs more calculation time but produces more precise 

capacity estimations. Significant changes are found for the MFD and for 

queue lengths (spillback). The latter now resembles results from the 
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microscopic model VISSIM quite closely and needs both the new link 

and node model. 

 

The new node and link model are part of the Dynamic Network 

Loading model of EVAQ. This model has been the centre of most 

changes performed for EVAQ and can be used in any other Dynamic 

Traffic Assignment model. Furthermore, the model is theory based and 

can thus be used for reversed engineering and more extensive analysis 

of bottlenecks, also for evacuation schemes. 
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Nederlandse samenvatting 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

EVAQ is een verkeersmodel voor ex-ante evaluaties van evacuatie 

plannen. Het model is nog onder ontwikkeling en het is onbekend of 

EVAQ nauwkeurig Netwerk Prestatie Degeneratie kan modelleren. 

Tegelijkertijd kan gezegd worden dat nauwkeurige Netwerk Prestatie 

Degeneratie erg belangrijk is voor evacuaties. Het onderzoek van deze 

thesis wijst uit dat er fenomenen zijn die bijdrage aan Netwerk Prestatie 

Degeneratie die niet gemodelleerd worden. Twee belangrijke 

fenomenen welke ontbreken zijn de degeneratie van doorstroming bij 

congestie en de randvoorwaarde welke knopen (kruispunten) zelf 

hebben. Een aantal ideeën is bedacht om de fenomenen te 

implementeren. Een selectie is gemaakt op bases van nauwkeurigheid. 

 

Degeneratie van doorstroming zodra een link congestie krijgt heeft 

betrekking op het linkmodel. Het linkmodel bepaalt het aantal 

voertuigen dat potentieel the link in en uit kan binnen een tijdstap. Om 

deze aantallen nauwkeurig te bepalen is het raamwerk van CBQ (file 

gebaseerd op cellen) ontwikkeld. Het representeert the file op een link 

als een aantal cellen gerelateerd aan opeenvolgende tijdstappen in het 

verleden. De theorie van kinematische golven, welke verklaart dat 

verkeersstaten stroomopwaarts verplaatsen, is toegepast. 

Verkeersstaten in de cellen kunnen dus worden herleid met de link 

uitstroom uit het verleden. Link instroom wordt bepaald door de 

overgebleven opbergcapaciteit van de link. Naast de theorie van 

kinematische golven is de cel aan het einde van de link onderhevig aan 

saturatie doorstroming. Dit past impliciet een capaciteitsverval toe. 

 

Een nieuw ontwikkeld knoopmodel evalueert randvoorwaarden op de 

knopen. Het nieuwe knoopmodel is een combinatie van deze 

randvoorwaarden en de randvoorwaarden van link instroom welke al 

worden geëvalueerd. Het knoopmodel bestaat uit meerdere 

submodellen welke voor verschillende knooptypes worden gebruikt. 

Het model voor kruispunten met verkeerslichten beschouwt het 

gecombineerde gebruik van conflictgebieden en het effect van 

groenfasen. Het model voor niet gecontroleerde kruispunten is 

gebaseerd op een capaciteitsformule welke de capaciteit van een 

ondergeschikte stroom bepaald aan de hand van een voorrangsstroom. 

De formule wordt gebruikt in een raamwerk waarin alle stromingen op 

een kruispunt gerelateerd worden. Voor rotondes wordt een bestaand 

model van Cetur (1986) gebruikt. Een soortgelijk raamwerk wordt 

gebruikt om alle stromingen over de rotonde te relateren. Het model is 

aangepast om op rijstrookniveau in plaats van linkniveau te werken 

voor turbo rotondes. Een nieuw model is ontwikkeld voor weefvakken, 

opritten en afritten welke naar rijstrook specifieke verkeersvraag kijkt. 
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Het nieuwe model vergt meer calculatietijd maar produceert ook 

preciezere capaciteitsinschattingen. Significante veranderingen zijn te 

vinden voor het macroscopisch fundamentele diagram en voor 

filelengtes. De overeenkomst van filelengte met de filelengte van het 

microscopische model VISSIM is nu veel groter en heeft zowel het 

nieuwe link en knoopmodel nodig. 

 

Het nieuwe link- en knoopmodel zijn onderdeel van het DNL 

(dynamische netwerkbelading) model van EVAQ. De meeste 

veranderingen hebben plaatsgevonden in dit model welke gebruikt kan 

worden in elk ander DTA (dynamische verkeerstoedeling) model. 

Daarnaast is het model gebaseerd op theorie en kan het zodoende 

gebruikt worden voor ‘reversed engineering’ en het extensiever 

analyseren van flessenhalzen, ook voor evacuatieschema’s. 
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 Preface 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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List of common symbols 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

General 

Q  cumulative quantity (Q is a dummy) 

t  time step number 

t∆  time step size 

τ  number of time steps related to a travelling distance 

 

Link model 

C  link capacity 

X  number of vehicles 

L  link (part) length 

U  link inflow 
max

U  maximum link inflow 

Q  queue inflow 

V  link outflow 
pot

V  potential link outflow 
maxϑ  maximum (free flow) speed 

f
 related to free flow part 

q
 related to queue part 

a  related to link a 

 

Cell Based Queuing 

( )gV  link outflow related to cell g 

( )gK  density inside cell g 

( )gW  speed inside cell g 

( )gL  length of cell g 

( )gT  travel time through cell g 

( )gS  storage capacity of cell g 
pot

V '  link outflow respecting queued cell states 
qT  queue travel time 

qX '   queued vehicles that can reach the link head within ∆t 
fX '   free flow and queued vehicles that can reach the link 

 head within ∆t 
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List of common abbreviations 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

 

CBQ  Cell Based Queuing 

 

DNL  Dynamic Network Loading 

 

DTA  Dynamic Traffic Assignment 

 

EVAQ  Evacuation of Vehicles using Assignment with Queuing 

 

LCM  Lane Choice Model 

 

MFD  Macroscopic Fundamental Diagram 

 

NPD  Network Performance Degeneration 
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1. Introduction 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

1.1 DTA, evacuation modelling and network performance  

1.1.1. Dynamic Traffic Assignment 

Dynamic Traffic Assignment (DTA) models are a class of models that 

can be used to model dynamic traffic processes. The term dynamic 

means that the state of model elements may change over time. For 

instance queues may change in length, route choice may change, 

pricing can be time dependant etc. DTA models use small time 

increments. For each time increment a new model state is calculated 

based on previous model state(s). Model components that are often 

found in traffic models that use DTA are demand modelling, route 

choice modelling and network loading. Demand modelling determines 

the number of people that wants to go from one place to another and 

which mode (car, bike, public transport, etc.) they will choose. Route 

choice modelling determines what route over the network people will 

take. Network loading is the simulation of traffic over the road 

network. 

1.1.2. Evacuation modelling using EVAQ 

A particular dynamic traffic process is the process of an evacuation. 

Both the network and the hazard are continuously changing. In the 

past few years a lot of research has been done on evacuations in the 

field of transport planning and traffic flow modelling. Recently a model 

by Pel, Bliemer and Hoogendoorn (2008) called EVAQ has been 

developed. EVAQ stands for Evacuation of Vehicles using Assignment 

with Queuing. The demand modelling determines when people will 

start their evacuation from their home. This results in a growing 

number of vehicles through time that wants to leave a certain area. 

Route choice modelling entails the choice of destination (save haven) 

and the route to take. Usually the destination choice is part of the 

demand modelling. For evacuations the destination is however not 

fixed, as the goal of the trip is not destination specific. The network 

loading simulates traffic on the network. Outcome is the network state 

(flows, speed, densities) through time. In EVAQ the DNL model from 

Bliemer (2007) is used. It avoids the use of link travel time functions 

(that result in the wrong location of queues) and explicitly model 

queuing and spillback. For evacuations it important that the location of 

vehicles is accurate as the hazard may strike certain areas at a different 

time than other areas. This has consequences for the number of 

casualties. EVAQ is used to evaluate the result of evacuation plans for 

which the number of casualties is very important. Another important 

criterion is evacuation time. For both criteria travel time plays an 

important role. Although EVAQ does not explicitly model travel time, it 

does model quantities that are related. Travel time can thus be an 

output of the model. An important modelled quantity is flow, which is 
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the number of vehicles that can pass a certain location on the network 

within some time span.  

1.1.3. Network Performance Degeneration 

By combining the flow of multiple locations of a network one can speak 

of network performance. There are multiple ways to combine flows 

such as weighted by link length, weighted by number of vehicles on a 

link and not weighted. In any case, network performance is a network 

wide quantity that explains the throughput of vehicles on the network. 

Because of interaction between vehicles on the network, network 

performance may be negatively influenced with an increasing number 

of vehicles on the network. This is called network performance 

degeneration (NPD). Processes that contribute to NPD have to do with 

interaction between vehicles. Many interactions exist such as blocking 

at intersections, lane changes, changes in speed etc. Chapter 3 will 

elaborate more on this. 

1.2 Problem definition 

In any model it is desirable to have a high level of accuracy. For 

evacuations this is difficult to achieve as traffic models cannot be 

calibrated and validated to actual data from evacuations as such events 

are (luckily) rare. It is therefore important to put much effort in 

accurately implementing existing knowledge of transport planning and 

traffic flow modelling. One important aspect of a road network is the 

possible degeneration of traffic performance under certain 

circumstances, as this may have large impacts on capacities and travel 

time. Most traffic models are concerned with travel time, money, 

emissions and safety. With evacuation modelling, human life is 

concerned as it is threatened by the hazard additional to traffic 

accidents. To preserve life, evacuations plans can be made that 

optimise evacuation time of given areas. Such evacuation plans depend 

largely on travel time and therewith on NPD. It has not been 

investigated whether EVAQ accurately models processes that 

contribute to NPD, leading to the problem definition of this research: 

 

 

1.3 Research objective and questions 

To improve the modelling of NPD the following research objective is 

formulated: 

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Problem definition 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Research objective 
To develop modelling solutions that correctly include processes that 

contribute to network performance degeneration in order to 

improve the accuracy of EVAQ and other DTA models. 

Evacuation plans are assessed largely by evacuation time for a given 

area. Evacuation time is highly dependent on network performance 

degeneration. It has not been investigated into what extend network 

performance degeneration is accurately modelled in EVAQ. This has 

to be investigated and if needed, EVAQ has to be changed and/or 

extended.  
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Note that the research objective has a wider scope than the problem 

definition, as other DTA models are included. This is because 

improvements of EVAQ are focussed on the DNL module that can also 

be implemented into other models. Research questions are divided in 

two phases that are explained in section 1.4. The following questions 

will be answered in the two research phases to reach the research 

objective: 

 

Phase one: 

• What processes influence network performance degeneration? 

• What processes are explicitly modelled in EVAQ? 

• What processes are not explicitly modelled, but are an effective 

part of EVAQ? 

• What processes need to be included in order to achieve better 

accuracy? 

 

Phase two: 

• What solutions can be created to include additional processes? 

• What assumptions need to be made for these solutions? 

• Are these assumptions more realistic considering network 

performance degeneration than the assumptions they avoid? 

• Are the processes indeed significant for network performance 

degeneration? 

• What are the consequences of the solutions on calculation time 

and memory use? 

1.4 Research approach 

The project will contain two phases in which the first phase is an 

investigation into EVAQ and NPD. The second phase is the generation 

and evaluation of solutions.  

1.4.1. Phase one 
EVAQ will first be investigated in order to be able to expand and 

change the model. Next, it is investigated what NPD is and what the 

causes are. EVAQ will be assessed and model runs will be performed 

with a Macroscopic Fundamental Diagram (MFD) as output. An MFD is 

a relatively new ‘tool’ in transport modelling. The tool is still under 

heavy research and cannot be used as a direct calibration tool [Daganzo 

& Geroliminis (2008)]. In other words, trying to fit the MFD of a model 

to the MFD of measurements will not guarantee accuracy. It however 

can be used to analyse what happens on a network scale. Model runs 

will only be performed for voluntary evacuations to filter out effects of 

evacuation plans. By including a network loading map, modelled 

processes can be identified. From phase one, shortcomings of EVAQ 

can be exposed. 

1.4.2. Phase two 
The second phase will be the creation, validation, implementation and 

evaluation of several solutions. Solutions are synthesized and a few will 

be selected based on realism. Theory-based solutions are chosen as 
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these minimise the need of evacuation data. The selected solutions will 

be fully developed in order to implement them in EVAQ. The new 

model will be compared with VISSIM for voluntary evacuations in order 

to assess the relevance of the newly implemented solutions. 

Performance of the new model is assessed for all evacuation types. 

1.5 Research scope 

As many factors play an indirect or direct role in network performance, 

the scope will be limited to what directly influences it, being the 

infrastructure and the people, see Figure 1.1. Loosely translated into 

the model world this is equal to the network and the vehicles. People 

within the vehicles make many choices. Here, departure time choice, 

vehicle choice, destination choice and route choice are not considered, 

as these are an indirect influence. Direct influences are deceleration, 

acceleration, lane changes, etc. These influences are a narrow definition 

of ‘driving’ and are very common in microscopic models. EVAQ is 

however a macroscopic model. Therefore the behaviour is dealt with in 

terms of averages. One can for instance think of fundamental 

diagrams, which are the result of microscopic behaviour. 

 

 
 

Also important to mention is that focus is on the development of 

modelling mechanisms rather than calibrating and validating model 

parameters. The reason for this is twofold. First of all calibration data is 

difficult to obtain, as evacuations are rare. Also, the time scope of this 

research is too short to be able to include a descent calibration. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 1.1: Scope of research 
Only direct influences are considered 

 

Scope 

Hazard 

Measures 
Government 

& crisis team 

Infrastructure Network performance 

People 

Driving 

Choices 
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1.6 Research relevance 

The relevance of this research is subdivided into scientific and practical 

relevance as listed below. 

 

Scientific relevance: 

• The DNL model by Bliemer (2007) is changed and extended 

such that: 

o Queuing in the link model is dynamically and efficiently 

modelled with more precision. 

o The node model assesses the capacity of the node itself 

besides the still valid exit link capacities. 

o The following assumptions are circumvented: 

� Link inflow and link outflow have an equal 

capacity limit. 

� Every queue is at jam (practically full stop) state. 

� Conflicts at the nodes are insignificant for 

capacity. Maximum link inflow alone is 

representative. 

• The model has become theory-based. The macroscopic network 

loading is coupled with microscopic phenomena. Theory about 

microscopic behaviour is translated to an aggregate level.  

• EVAQ can be further developed where model runs that are part 

of an iterative development cycle can rely on more realistic 

DNL. Results will be less obscured by errors from the network 

loading giving a more clear view on the workings of other 

model components. 

• Insight in intersection mechanisms and capacity constraints is 

gained and made explicit. 

• The new weaving model introduces a new weaving theory in 

which lane choice is an important factor. 

 

Practical relevance: 

• The gain in precision enables a better assessment of evacuation 

plans. Such plans are important for the governmental 

organisation Rijkswaterstaat. 

• Other DTA models can benefit from the new DNL model. 

• Using detailed model results enables a process of reversed 

engineering in which for instance certain movements at 

intersections may be prohibited during an evacuation in order 

to minimise delays by flow interaction.  

• Similarly for regular circumstances, black-spot analyses can be 

performed into the constraining elements (such as turn lanes) at 

intersections. Such elements may receive higher priority or 

higher capacity. 

1.7 Reading guide 

The structure of this report is displayed in Figure 1.2. The chapters are 

depicted into three general development phases: analysis, synthesis and 
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evaluation. Note that the usual development phase of calibration is 

excluded, as explained in section 1.5 about the research scope. 

 

 
 

Chapter 2 – This chapter gives an overview of EVAQ. The model 

components and model loop are explained. The DNL model, important 

in this research, is briefly discussed as having two sub models being the 

link and the node model. 

 

Chapter 3 – Section 3.1 is an investigation to what network 

performance and the degeneration thereof is. Causes are identified. 

Section 3.2 describes test runs performed with EVAQ to investigate 

how these causes are modelled. Important output of these test runs is 

the Macroscopic Fundamental Diagram (MFD). Following, section 3.3 

lists observations from the test runs. Next, observations are made from 

the model assumptions and mechanisms. Finally section 3.5 answers 

the research questions of phase one. It is found that the link model can 

be extended with more detailed queuing dynamics and that the node 

model has no capacity constraints of the node itself. 

 

Chapter 4 – In this chapter a series of possible solutions is presented. 

Section 4.1 till 4.5 briefly explain ideas to improve the model. In section 

4.6 two solutions are selected on the basis of realism and a new 

modelling framework is presented in section 4.7. Cell Based Queuing, 

where each cell explains a part of the queue, is selected for the link 

model. For the node model it is recognized that capacity constraints of 

the node itself will be included. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 1.2: Report structure 

E
v
a
lu
a
ti
o
n
 

 

S
y
n
th
e
si
s 

 

Chapter 2 – EVAQ overview 

 

Chapter 3 – Network Performance Degeneration and EVAQ 

 

Chapter 4 – Synthesis of modelling solutions 

 

Chapter 5 – Link model improvements 

 

Chapter 6 – Node model improvements 

 

Chapter 9 – Conclusions and recommendations 

 

Chapter 8 – Evaluation of model performance and model outcome 

Chapter 7 – Weaving model 

 

A
n
a
ly
si
s 

 



 
 
 

 

 

 
 7  Network Performance Degeneration in Dynamic Traffic Management  

Chapter 5 – This chapter further explains how Cell Based Queuing 

works. Section 5.1 first explains how the queue is represented. In 

sections 5.1.1 and 5.1.2 it is explained how the maximum link inflow 

and the potential link outflow are derived from the new queue 

representation. Section 5.1.3 elaborates on short links within the new 

representation, as the model needs to be able to deal with short links. 

This follows from the fact that nodes will need to resemble actual 

intersections rather than aggregated intersections. A numerical example 

is given in section 5.1.4. Section 5.2 will give some conclusions. 

 

Chapter 6 – In this chapter the various node type specific sub models of 

the new node model are explained. In section 6.1 a few general 

changes to the node model framework are discussed after which 

section 6.2 presents the Lane Choice Model (LCM) that is the basis of 

the node type specific sub models discussed in this chapter. Sections 

6.3 till 6.5 are about sub models for controlled intersections, 

uncontrolled & priority intersections and roundabouts. All these models 

are based on existing models and formulas. 

 

Chapter 7 – This chapter describes the sub node model for weaving, 

merging and diverging sections at highways. It is treated separately as 

it is a new model, does not use the LCM and needs to be calibrated, as 

the model parameters are unfamiliar to traffic engineers. First, section 

7.1 discusses existing weaving models and theory. Section 7.2 explains 

the new model that is based on lane choice of the road users. A 

numerical example is presented in section 7.2.4. The calibration, based 

on FOSIM data, is given in section 7.3.  

 

Chapter 8 – Various aspects of the new model will be evaluated in this 

chapter. Section 8.1 is a qualitative assessment of the new link model 

(CBQ). It is shown that both free flow and congested traffic show the 

correct kinematic waves over the link. A sensitivity analysis is performed 

that shows sensitivity to the capacity and saturation flow parameters. 

Section 8.2 lists many qualitative observations of the various sub node 

models that are based on movies that display the free flow and 

congested traffic states of the links. Behaviour is as expected. Next a 

quantitative comparison is shown with VISSIM. Generally the 

intersection capacities are good but some link specific capacities show 

rather large errors, especially for the controlled intersection and the 

weaving section models. Section 8.3 shows the model significance of 

both the new link and node model with respect to the old model and 

the VISSIM results. Section 8.4 discusses the performance of the new 

model. Calculation time is largely increased for scenarios that are 

quickly calculated but only slightly increased for scenarios that are not 

quickly calculated. Finally section 8.5 discusses the applicability of the 

new model. 

 

Chapter 9 – Conclusions and recommendations for both modelling and 

implementation are given in this chapter. 
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2. EVAQ 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

This chapter will elaborate on EVAQ and its components. A general 

overview will be given and the role of separate components will be 

explained. This chapter is not a detailed coverage of EVAQ but enables 

one to understand the general mechanism of EVAQ. Appendix A: 

EVAQ Algorithm Overview is a full technical explanation of EVAQ. The 

appendix can be used as a reference.  

2.1 An overview of EVAQ 

EVAQ is a traffic model aimed at evaluating plans for an evacuation. 

Various hazards can be investigated, as long as a time-spatial pattern 

can be described. The hazard not only creates casualties, it also 

influences the network by changing link parameters such as maximum 

speed and capacity. The model is dynamic in the sense that both traffic 

flows and the network change over time. The dynamics are described 

by three model components: demand modelling, route choice 

modelling and network loading. A route generation method from 

Bliemer & Taale (2006) and travel time estimation are used for the 

route choice modelling.  

 

The scheme in Figure 2.1 displays a typical loop of the EVAQ model for 

a single time step. The travel time estimation, route set generation and 

route choice model are not performed every loop as this significantly 

reduces calculation time with minimum loss of accuracy. Instead, split 

fractions of earlier time steps are used. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 2.1: EVAQ Framework 
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2.2 EVAQ modules explained 

2.2.1. Demand model 

The loop starts at the demand model where the decision to start 

evacuating is modelled. This decision depends on the time until the 

hazard strikes and possibly the given evacuation instruction. 

Instructions are included for mandatory or recommended evacuations. 

Voluntary evacuations have no evacuation instruction. For 

recommended evacuations a level of enforcement is included forcing 

people with different amounts to leave according to the evacuation 

instruction. The rationality of the road user is included with an 

aggregated parameter that adapts the utility to leave a given origin. It 

follows from the used logit model that this allows a distribution that 

can be anywhere between fully rational and fully irrational 

(indiscriminate). The demand model results in an increasing number of 

vehicles per origin that will enter the road network if possible. 

2.2.2. Route choice model 

The route choice model determines split fractions at each node. Split 

fractions depend on the available routes and the expected travel time 

of these routes. Also the possible route instruction and rationality are 

factors similar as in the demand model. It is assumed that people have 

knowledge about the location of queues. With this assumption the 

travel time estimation component can determine expected link travel 

time. Links damaged by the hazard get infinite travel time. Multiple 

routes are generated for each node with increasing stochastic variation 

for link travel time. This captures differences in human perception of 

expected travel time. Based on the deterministic travel time, the route 

choice model divides flows from each node over the connecting links 

based on the generated routes. The distribution results in split fractions. 

The route choice model, route set generation and the travel time 

estimation are not performed each loop. To reduce calculation time the 

same split fractions can be used for a few successive time steps without 

large consequences for accuracy.  
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2.2.3. Network loading model 

The DNL model from Bliemer (2007) is used. Two sub models, the link 

and the node model, determine the exact way in which vehicles 

transverse the network.  

 

Link model 

The link model splits links into two parts, the free flow and the 

congested part, as in Figure 2.2. Vehicles transverse the free flow 

section at free flow speed. At the edges of the parts, cumulative flows 

are tracked. Cumulative link inflow, queue inflow and link outflow are 

the central quantities that the network loading is based on. 

 

 
The task of the link model is to determine what number of vehicles can 

enter and leave the link within a time step. Potential outflow is 

determined by vehicle supply (inflow patterns) limited by capacity. 

Maximum inflow is determined by the remaining link storage capacity 

limited by capacity. The number of vehicles in queue determines the 

queue length, assuming a single and fixed queue density.  Based on the 

queue length, the queue inflow is determined from the inflow pattern 

and the current expected link travel time can be estimated for the route 

choice model. 

 

Node model 

The node model applies split fractions to the potential link outflow of 

the link model. If this results in a potential link inflow that exceeds 

maximum inflow, all flows over the node are reduced accordingly. This 

is how congestion is initiated either by the limit of capacity or 

remaining storage capacity. The latter may be limiting with long 

queues, creating a spillback mechanism.  

2.3 Conclusions 

EVAQ is a model that captures the traffic process of an evacuation. 

Many assumption are contained within the model about departure 

choice, route choice combined with destination choice and how 

vehicles transverse the network. Mainly the DNL model is of interest 

within the scope of this research. Central in the DNL model are the 

cumulative flows. The next chapter will investigate NPD using a 

macroscopic fundamental diagram, which is related to link flow. An 

assessment will be performed to see if the DNL model of EVAQ deals 

with the degeneration of network performance as expected. 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 2.2: Link model 

[Bliemer (2007)] 
tail node head node
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3. Network Performance Degeneration 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

This chapter will start with an investigation into what network 

performance is and the degeneration thereof. Next, causes to this 

phenomenon are identified in order to evaluate if EVAQ is able to 

model the degeneration of network performance. In section 3.2 some 

test runs with EVAQ are described that have a macroscopic 

fundamental diagram (MFD) as output, from which observations are 

made in section 3.3. From chapter 2 it can be learned what EVAQ 

models and what assumptions are made. Based on this, section 3.4 

observes shortcomings in EVAQ with respect to the causes of NPD. 

Finally some conclusions are drawn from the observations. 

3.1 Network performance 

Performance of a network is a rather general term that can be 

interpreted in several ways. The main indicator within this document is 

macroscopic flow. Macroscopic flow also has many definitions; here a 

non-weighted summation of flow over all nodes is used. This measure 

is used as links have multiple flows due to the link model. By the law of 

flow conservation, node flow is equally valid. Note that origin and 

destination nodes have no flow ‘over’ the node. Only en-route nodes 

are thus considered. Other definitions of macroscopic flow exist, such 

as weighted flow by length or pcu, but here the exact definition is not 

important. Of importance are the conclusions that can be drawn when 

looking at macroscopic flow. Such conclusions are easier to derive from 

non-weighted flow. Travel time may seem a more intuitive indicator, 

but it is less directly connected to the model. A problem is also that 

travel time cannot be determined within a single time step. Any vehicle 

arriving at its destination will have a travel time dependant on previous 

time steps, obscuring abrupt changes such as the start of congestion for 

a certain link. Interpreting how the model responds and works can be 

assessed more directly by using flow. 

 

Macroscopic flow can be plotted against the number of vehicles (or 

pcu) that is on the network in total. This is called accumulation. By 

subtracting the cumulative outflow from the network from the 

cumulative inflow into the network, the net amount of vehicles can be 

determined for any time step. How exactly the relationship between 

the number of vehicles in the network and the macroscopic flow should 

look like, is subject of extensive research, see Qian (2009). However, 

some is known, the main thing being that from some point, network 

performance should degenerate [Daganzo & Geroliminis (2008)], see 

also Figure 3.1. The following sections summarize processes that 

contribute to this decrease in flow. Flow decrease with density increase 

(congested branch of fundamental link diagram), capacity drop and 

spillback/gridlock are mentioned. 
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3.1.1. Flow decrease with density increase 

From fundamental link diagrams (density vs. flow) it is known that if 

density is higher than capacity density, there should be a decrease in 

flow as density increases [Syllabus CT4821]. This decrease is a highly 

stochastic process resulting in various definitions of fundamental 

diagrams. One thing however is omnipresent in all; average flow 

decreases gradually up to a point where flow becomes impossible, jam 

density. An example of a fundamental diagram (density vs. flow) is 

given in Figure 3.2. 

 

 
 

The decrease in flow is the result of less efficient driver behaviour. As 

density increases, the speed decreases more than by ratio. During 

evacuations it may be expected that drivers behave differently, 

resulting in a different shape of the fundamental link diagram. The 

reduction of flow will however remain, as this is inherent to driver 

behaviour. As the accumulation of a network increases, more and more 

links will become congested. Total flow will thus start to decrease at 

some level of accumulation. 

3.1.2. Capacity drop 

Many traffic flow researches assume the fundamental link diagram 

shows a capacity drop [Ning Wu (2001), H. M. Zhang (2000), Syllabus 

CT4821]. Different causes for this capacity drop can be assumed such 

as driver behaviour and maximum capacity downstream. In terms of 

driver behaviour, H. M. Zhang (2000) assumes different states where 

drivers can be in. Drivers are relaxed, anticipating or balanced. The 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 3.1: Example 

macroscopic fundamental 

diagram 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 3.2: Example 

fundamental k-q link diagram 
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result is several highway capacities. Figure 3.3 shows an example 

fundamental link diagram with capacity drop. 

 

 
 

The effect of the capacity drop is a reduction of maximum flow at the 

head side of congestion. For example at traffic lights this value, the 

saturation flow, is about 1800 pcu/h. This is lower than regular 

capacity values. Also in other cases such as a bottleneck on a highway 

where vehicles are driving maybe at 50 km/h, it may be expected that 

drivers are unable to achieve maximum outflow equal to capacity. The 

effect of the capacity drop in fundamental link diagrams on MFD’s is 

uncertain. Daganzo 2008 for instance does not show any kind of 

capacity drop in his proposed MFD. 

3.1.3. Spillback and gridlock 

Bottlenecks (of any form) put a limit on the maximum flow of upstream 

links. This includes intersections that are influenced by spillback from 

upstream links. Through the intersection, the queue effectively 

influences links further upstream. Note that the bottleneck itself has no 

direct influence in macroscopic flow reduction. It puts a limit on flow 

and any queue behind it suffers from further flow decrease only due to 

stochastic congestion processes. The resulting flow might even be lower 

than maximum flow in the bottleneck. 

 

Links that are influenced by spillback will have reduced outflow, 

resulting in NPD. Vehicles that want to go to the link with spillback 

block vehicles that do not want to go to the link with spillback. All 

vehicles on a link are thus influenced and all flow is reduced. If vehicles 

enter the intersection while they cannot clear it, they block the entire 

intersection and all upstream links suffer from outflow reduction. If a 

set of links and nodes form blocking circles, gridlock has occurred. No 

vehicle can leave the intersection as no vehicle can enter the links. No 

vehicle can enter the link as the links are fully congested and no vehicle 

can leave the links. Gridlock is a very real phenomenon. 

 

For network performance, spillback and gridlock can have severe 

effects. Especially if drivers have only few route options, the effect will 

be strong. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 3.3: Example 

fundamental k-q link diagram 

with capacity drop 
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3.2 EVAQ test runs with an MFD as output 

In order to find out how the chosen DNL method performs, a small test 

network was used, see Figure 3.4. There are three origins (nodes 1, 2 

and 3) where a flood will strike. Population is listed at the origins. There 

is one save haven (node 10). Capacities are shown at the links in pcu/h. 

By adapting the capacity of the entrance links (1-5, 2-4 & 3-6), the 

effective demand on the network can be adjusted. The congestion on 

the entrance links themselves plays no role as only en-route node flow 

is considered. By adjusting the capacity of the exit link (9-10) the 

amount of congestion and spillback can be adjusted. In this way both 

dimensions of the MFD are covered. 

 
Several runs were performed in which the following factors were used 

on the original capacity of the entrance links: 1/3, 2/3, 1, 4/3, 5/3 & 2. 

Note that vehicles do not leave spread evenly throughout an hour. 

Actually, full capacity of the entrance links in the first time steps is 

reached, even with a factor of two on capacity, since 98,2% of the 

inhabitants wants to leave immediately. This is because the hazard will 

strike in one hour, for which it is assumed (based on a logarithmic 

departure pattern) that this percentage of people has started their 

evacuation. The entrance capacities were used twice with different exit 

capacities of 2000 or 6000 pcu/h creating severe and minor spillback. 

Table 3.1 shows the parameters that were used in the runs. All runs are 

voluntary evacuations to filter out influences of an evacuation scheme. 

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 3.4: Test network 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 3.1: Test run capacities 

[pcu/h] 

1 

2 

5 7 

4 

3 6 8 

9 10 

3000 3000 

2000 

3000 2000 

6000 
2000 

2000 
2000 

3000 

3000 

4000 

4000 

4000 

8000 

4000 



 
 
 

 

 

 
 15  Network Performance Degeneration in Dynamic Traffic Management  

Voluntary evacuations let drivers select their own destination and route. 

Usually, the closest destination and the shortest route are chosen. For 

gridlock to occur, there must be diverse route choice behaviour. For this 

reason, a separate test network was made as in Figure 3.5. The 

network represents an urban network with a ring road. More important 

however is that for this network, the route choice model was adapted. 

Split fractions are made equal for all links, creating diverse traffic. Off 

course this is not realistic route choice behaviour. The purpose of this 

run is however to find out if the DNL model will produce gridlock if 

circumstances are right. 

 

 

  

3.3 Observations from the test runs 

As described, MFD’s will be used to find out what phenomena are 

present in EVAQ with respect to network performance. Each run 

produces a certain shape as can be seen in Figure 3.6 and Figure 3.7. 

The different runs are indicated with the symbol as in Table 3.1. Each 

dot represents a time step. 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 3.5: Test network for 

gridlock 
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Some key observations can be made from the resulting plots: 

1. There is a more or less linear free flow part. 

2. There are several horizontal parts. 

3. Jumps are visible in between the horizontal parts. 

4. In case of a severe bottleneck, performance degeneration is 

visible. 

5. The runs follow a clock-wise path more or less shaped as an 

italic ‘p’. This is similar as found by Qian (2009). 

6. Additional to the steps, there are points in between with no 

apparent reason at first sight. 

 

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 3.6: Macroscopic 

fundamental diagrams with C9-

10 = 6000 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 3.7: Macroscopic 

fundamental diagrams with C9-

10 = 2000 
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The linear free flow part is as expected. No NPD should occur for free 

flowing traffic, nor does it actually arise. 

 

The horizontal parts are quite remarkable. The flow remains perfectly 

equal for a range up to 1000 till 2500 vehicles on the network. This is 

not at all comparable to a fundamental link diagram. The node model 

applies the same restrictions on link outflow during such a range, due 

to spillback. To explain, Figure 3.8 shows a small part of a network 

where links A and B merge into C. The second image shows that link A 

and B are affected by spillback from link C. Assuming that flow out of 

C remains constant, flow into C also remains constant. The third image 

shows that congestion on both links A and B grows. Flow over the 

merge node however remains constant. In other words, there are more 

and more vehicles on the network while flow remains constant. Only as 

soon as link B creates spillback will the macroscopic flow change, as in 

the fourth image.  

 

 
 

 

The steps between the horizontal parts can be explained in relation to 

the spillback. As soon as a link is spilling back, flows of upstream links 

will be reduced. The opposite happens if spillback disappears. Flows of 

upstream links will then increase if demand is still present. 

 

A fifth observation that can be made from the results is a path that 

each run makes through the plots. It first rises up to a point where the 

network is filled enough for spillback to limit or reduce flow. Then there 

is a stepwise reduction of flow, where each step is a new link that is 

affected by spillback as explained earlier. After a while there is no 

traffic from the origins anymore, resulting in a stepwise reduction of 

flow. The steps now represent links that become unaffected by 

spillback. Flow could go up, but actually goes down because there is no 

demand left. This is why spillback disappears in the first place. The path 

is strongly related to the demand pattern and the size of the network. 

What is important to note from this is the fact that if a congested 

network depletes, it will not follow the same path as when it got filled. 

This is different than generally assumed for fundamental diagrams of a 

link. Qian (2009) observes a similar cause for the shape of the MFD in 

the macroscopic DTA model MARPLE and the microscopic model 

VISSIM. 

 

A last observation is chaotic (at first sight) points in between the steps. 

To analyse what this is, and also to verify the preceding statements, the 

macroscopic diagram of run 12 was plotted next to the loaded network 

into a movie. In this way the macroscopic diagram can be related 

directly with traffic phenomena. It appeared that short bursts of 

different route choice behaviour explained the chaotic points. The 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Wardrop principle [Wardrop (1952)] applies, making people 

temporarily use other links. Figure 3.9 shows this principle. Queues at A 

and B share a downstream link. The queue at A will therefore have 

lower outflow than the queue at C as both downstream links have 

equal capacity and thus flow governed by the network exit link. 

Vehicles from the queue at D will therefore mostly choose the route via 

C. At some point however, the queue at A is shorter than the queue at 

C and a few vehicles from D will change their route via E. Quickly the 

queue at A becomes longer than the queue at C and C is again the 

better alternative. Flow E increases macroscopic flow for a small time 

span, resulting in the gain as seen in the close-up of the plot (note that 

the path goes from right to left). 

Similarly to the route choice phenomena, all previous statements were 

also visually verified. Figure 3.10 shows all observed phenomena. 

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 3.9: Route choice close-

up 
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Figure 3.10: Observed 
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3.3.1. Gridlock 

The gridlock test run did indeed result in gridlock as Figure 3.11 shows. 

The nine central origins are all blocked. Vehicles on the nodes are 

unable to clear the nodes as each node has a fully congested link 

connected to it. EVAQ applies a single reduction factor on an 

intersection thus all flows are blocked. The congested links have no 

outflow, as the nodes allow no flow. There are in fact 2 blocking cycles 

and one link ending into a cycle. In the MFD we can observe that 

although there are about 8600 vehicles, there is no flow whatsoever. 

 

 

3.4 Observations from the dynamic network loading 

The previous section has listed observations made from the MFD. By 

looking at the DNL model additional observations can be made. This 

section will explain the assumptions about the queued traffic state of 

the link model and the capacity constraints of the node model. 

3.4.1. Queued traffic state 

In EVAQ, some assumptions are made for the queued traffic state. The 

most prominent assumptions are a maximum outflow equal to capacity 

and a fixed density. These assumptions effectively assume the 

fundamental diagram as shown in Figure 3.12.  The free flow branch is 

normal for a fundamental link diagram and needs no further 

explanation. The congested branch is far from normal, see also Figure 

3.2. The cause of the vertical branch is the assumption that the queue 

is at a fixed density, being jam density. One could argue that there is a 

fundamental difference between the traffic state that an individual 

vehicle can be in and the average traffic state that the link can be in. 

Note however that fundamental diagrams are derived for cross sections 

and only apply to the entire link as the link is thought to be 

homogeneous. In other words, the fundamental link diagram relates to 

any cross section of the link, but is not about an aggregation of link 

length. Within the modelling framework, cross sections will mostly 

produce data points on the fundamental diagram of Figure 3.12. Only 

if both free flow and congested traffic arise at a cross section during 

the aggregation period will there be points in between. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 3.11: Gridlock test run 
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The fundamental diagram in Figure 3.12 explains to a large extend 

what happens in the test runs. The horizontal parts are explained by 

the fact that as long as queues are present and node constraints 

(spillback) remain equal, flow will not change. Clearly these 

assumptions are ignorant to the gradual relation between congested 

flow and density present in fundamental link diagrams, see also 3.1.1. 

Such a fundamental diagram might result in flow even lower than the 

limit by spillback. Qian (2009) found similar fundamental link diagrams 

in the MARPLE DNL model that uses a similar horizontal queuing 

framework. Densities between density at capacity and jam density are 

also found, as the average link density is related to link outflow. Qian 

identifies that the spatial separation of density and flow made the 

model unsuitable for the generation of MFD’s. 

3.4.2. Constraints in the node model 

From the test runs it follows that the node model propagates 

congestion over the nodes and spillback is correctly modelled. It can be 

questioned if the amount of spillback is correct, as only link capacity is 

included as a constraint on flow. Intersections themselves pose capacity 

constraints on flows and can possibly lead to smaller flows and larger 

queues. As an example of the current node model an intersection is 

given with 2 incoming links, 2 outgoing links and 4 flows, see Figure 

3.13 (left). The link to the north is a limiting constraint. It is shown that 

capacity of 2000 is exceeded. By reducing all flows by a factor of 0.8, 

the flow is reduced down to capacity (see the right image). 
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Figure 3.12: Fundamental 

diagram according to EVAQ 
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So far there seems to be no problem. Note however that there is a 

conflict point between the two through movements that has a demand 

of 2400 pcu/h. According to the Syllabus CT4822 the following 

capacities apply to a conflict: 

 

• Uncontrolled intersection 

Depending on the flow ratio, the capacity of two crossing flows 

is anywhere between 1600 and 2000 pcu/h. 

• Controlled intersection 

A base saturation flow of 1800 pcu/h is utilized during the 

share of green time. Many factors can by applicable to the 

saturation flow, many of which tend to lower the saturation 

flow. 

 

Apparently, in this case the capacity constraints of the intersection itself 

are more limiting than the link capacity. Constraints of the intersection 

should thus be included for a correct assessment of capacity. 

3.5 Conclusions 

Using the results presented in this chapter, the research questions of 

phase one can be answered.  

 

What processes influence network performance degeneration? 

These processes are discussed in section 3.1 and are flow decrease with 

density increase (fundamental link diagram), capacity drop for 

congested traffic, spillback and gridlock. All these processes originate 

from congestion. From section 3.4.2 it may also be concluded that 

capacity constraints of both the links and the nodes can trigger 

congestion. 

 

What processes are explicitly modelled in EVAQ? 

From chapter 2 it follows that the node model has two causes for 

congestion that both relate to the maximum link inflow. Either the link 

capacity is exceeded or the link is fully congested. Congestion is thus 

explicitly triggered and spillback is explicitly modelled. 

 

What processes are not explicitly modelled, but are an effective part of 

EVAQ? 

Related to spillback, gridlock is also an effective part of EVAQ. It has 

been shown in section 3.3 that the single reduction factor enables 

blocking cycles. 

 

What processes need to be included in order to achieve better 

accuracy? 

Remaining processes that are not covered by EVAQ are flow decrease 

with density increase, capacity drop and capacity constraints of 

intersections. 

 

From the answer to the last question it may be concluded that EVAQ, 

and especially the DNL module, can be improved. A more detailed 

representation of congested traffic will be needed to vary the density of 
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queues. A capacity drop should be imposed on congested traffic and 

the node model will have to be extended with capacity constraints of 

the node itself. 

 

The next chapter will present several solution directions to implement 

the above changes. The three following chapters will work out selected 

solutions into more detail. 
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4. Solution directions 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

The previous chapter has shown that EVAQ omits certain processes 

contributing to NPD. This chapter will explore some general ideas to 

include these processes. Some of the solutions are then selected for 

further development. The next three chapters will elaborate on the 

selected solutions in more detail. The solutions discussed in chapters 5 

& 6 for the link and the node model respectively are extensions of 

existing theories, models and formulas. Chapter 7 elaborates on the 

weaving model, which is part of the new node model. This model is 

entirely new. For the link model, the solutions will try to capture 

queuing into more detail. The node model solution will elaborate on 

flow interaction at the node, possibly triggering congestion. The current 

node model will not change as imposing flow reduction whenever 

vehicles cannot clear the node nicely covers spillback and gridlock. This 

holds for all node types as soon as congestion is significant. 

 

Sections 4.1 till 4.3 will describe new ways to represent congestion. 

Solutions are; using an average congested state, directly implementing 

a fundamental diagram that relates outflow with the density of the 

entire queue and Cell Based Queuing (CBQ), which also relates outflow 

with densities in the queue but includes shockwave theory. Section 4.4 

will elaborate on imposing a limit on outflow for congested traffic. 

Section 4.5 will generally explain how capacity constraints of nodes can 

be included. Next, a selection of the solutions will be made and a new 

modelling framework is presented. Finally, conclusions will be drawn. 

4.1 Average congestion state 

A simple change to the model, without introducing any additional 

computation time or complexity, would be to use different values for 

congested traffic. Instead of using a queue density equal to jam density 

(kjam), and a maximum queue outflow equal to capacity (C), one could 

opt for more conservative and average values. One could for example 

represent congested flow by the median congestion values: 

 

2

−
= +

jam capacity
queue capacity k k

k k  

2
=queue C

q  

=
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queue
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Note that the head node might limit the flow. This would also change 

the density and speed of the queue according to a fundamental link 

diagram. The current model does not deal with this. Values could be 

calibrated to represent congested traffic as close as possible. Data from 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation 4.1 
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evacuations is however hardly available. A new fundamental diagram 

arises from these assumptions as shown in Figure 4.1. 

 

 

4.2 Direct implementation of a fundamental diagram 

Another way to represent the queue is a new concept that uses a 

fundamental link diagram to derive a single queue state. For a given 

(out)flow, a fundamental diagram assumes a certain density and speed. 

The density could be applied to the entire queue, assuming 

instantaneous kinematics. This could potentially lead to vehicles 

effectively going back. In order to prevent this, a limit should be 

applied on the density. For example if 50 vehicles stand in a queue of 

500m and 10 vehicles will leave within a time step, then the density of 

the next time step can never be lower than 40 vehicles over the same 

500m. This limit keeps the last vehicle in queue at time t on the same 

spot for time t+1, see also Figure 4.2. 

 

 
 

Density itself might limit outflow for the next time step. Applying this 

with the same k-q relationship makes it impossible for density to get 

below the defined k-q line while the limit of original queue length 

makes it possible for k to be larger than the defined k-q line (Figure 

4.3, B). For a representative k-q noise (Figure 4.3, A) either the k-q 

relation needs to be defined lower than average (Figure 4.3, C) or 

different k-q relations should be defined for k = f(q) and q = f(k) 

(Figure 4.3 D). 

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 4.1: Fundamental link 

diagram with average 
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Figure 4.2: Direct 

implementation of 
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4.3 Cell Based Queuing 

In some DNL models [Daganzo (1993), Yperman, Logghe, Tampere & 

Immers (2005)], kinematic wave theory is applied on either cells or 

links. Different traffic states (flow, density, speed) are assumed to move 

along a link with a certain wave speed. Assuming a triangular 

fundamental diagram entails a single wave speed for free flow traffic 

and a single negative wave speed for congested traffic (w). Cumulative 

vehicle numbers now are related to cumulative vehicle numbers in the 

past. The time that is looked back is dependent on the link or cell 

length and the kinetic wave speed to be used. A problem with cell 

based models is that they are CPU demanding as dynamics are 

evaluated for each consecutive pair. A new modelling framework is 

thought up that prevents calculations per cell but rather uses all cells on 

a link at once. This framework is called Cell Based Queuing (CBQ). 

 

To capture the theory of kinetic waves we can split the link into cells, 

but here only for the congested part. Cells will have a length that is 

equal to what a congested kinetic wave transverses in a time step. This 

is different from Daganzo (1993) where each cell has a length related 

to free flow speed. Each cell holds the average traffic state, initiated in 

a particular time step. The cell states are initiated by link outflow. As 

congested waves move upstream, so do the cell states. In this way the 

congested kinematic waves are represented in the queue. 

 

Link inflow 

In the current model, maximum inflow of a fully congested link equals 

the remaining storage, assuming jam density. Kinematic wave theory 

however demands that maximum inflow equals the outflow some time 

ago [Yperman, Logghe, Tampere & Immers (2005)]. The time that 

needs to be looked back equals La/w or the time it takes for a 

congested kinematic wave to transverse the link. This phenomenon is 

represented by the cell states as the upstream cell actually holds this 

traffic state. The maximum inflow is still the remaining storage, but the 

storage is based on densities from the cell states. 

 

Queue inflow 

It makes no sense to apply a similar principle on queue inflow. Instead 

of limiting the queue inflow of a fixed point, all potential queue inflow 

should be accepted into the queue and the queue length should be 

adjusted accordingly, as is practice in the current model. Note however 

that the queue length is determined by the densities from the cell 

states. 

 

Link outflow 

Having the queue respecting the cell states also imposes speeds in the 

cells. Because of these speeds, there may be a limited number of 

vehicles that could actually reach the link end within a time step, as can 

be seen in Figure 4.4 where T is the travel time towards the link head 

and S is the cumulative number of vehicles. The link is split into cells as 

indicated by the dash-dot lines. For free flow traffic a limit on potential 

outflow is already achieved from link inflow following wave speeds 
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where the speed is simply the maximum speed resulting in τ, which is 

the (non integer) number of periods relative to t that vehicles now 

entering the queue, entered the link. Note that ‘entering the queue’ 

equals ‘leaving the link’ if no queue exists. A linear interpolation over 

link inflow is performed to determine the number of vehicles that can 

reach the end of the link within the time step. 

 

 
 

Different from existing models is the fact that the cell states are 

aggregated into cumulative quantities per link, providing an easy and 

fast way to derive momentary maximum link inflow and potential link 

outflow. Dynamics for each cell pair do not need to be assessed. 

 

Besides the free flow and congested waves described, there are also 

standing waves. Lenz, Sollacher & Lang (2001) indicate that these 

waves are usually formed by local speed control. They are the result of 

stop and go waves that are flattened out. In order to include this 

phenomenon, local speed control would have to be modelled. This 

would be very complex, as cell length will probably not coincide with 

the gantry locations where standing waves are initiated. Lenz, Sollacher 

& Lang (2001) however also indicate that highway sections with a 

standing wave have (almost) constant flow both over the section and 

over time. Using a fixed fundamental diagram does not allow the 

differences in speed around a standing wave at an equal flow. In 

reality, standing waves contribute to the scatter often witnessed in 

fundamental diagrams. Using a representative fundamental diagram 

takes away the need to include standing waves. 

4.4 Congestion outflow limits 

In EVAQ it is assumed that outflow on a congested link can be as high 

as the capacity of the link. Bliemer (2007) explains that capacity in this 

context should be defined differently from capacity as in a fundamental 

link diagram. However, in EVAQ all links have a single capacity 

determining both the maximum in- and outflow. In congested state, 

this seems an overestimation of capacity. Examples to contribute to this 

argument are the base saturation flow at traffic lights (1800 pcu/h/lane 

[Syllabus CT4822]) and the congestion discharge rate at highways 

[Ning Wu (2001)] which might be related to capacity drop [Syllabus 

CT4821]. Reducing queue outflow will degenerate network 

performance to a larger extend than using capacity flow. Congested 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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outflow capacity might be dependent on the type of link as people 

behave differently on for example an urban road or a highway. 

4.5 Constraints in the node model 

The node model will need to be extended in order to include capacity 

constraints of the node itself. Extra constraints can help to limit the use 

of conflict points to the capacity of such a point. This capacity is 

dependent on the type of node. Also the way in which flows interact is 

different for different nodes. Similar to traffic light groups, there can be 

multiple flows crossing all other flows in the same group. Figure 4.5 

shows an example of this. Constraints should thus be defined for 

groups, and not just for pairs. These constraints can potentially play a 

large role in NPD. Focusing on this, a method for evacuation routing is 

proposed by Cova & Johnson (2002) that minimizes the number of 

conflict points since most traffic delays actually occur at intersections 

[Southworth (1991)]. 

 

 

4.6 Selection of solutions 

Five different implementations for proper NPD were discussed. Some of 

these will be worked out in the following chapters and eventually 

implemented into EVAQ. Four out of five solutions cover the link 

model, one covers the node model. The solution for the node model is 

however very general. What it comes down to is additional capacity 

constraints. For the link model a solution must be selected. Theory 

based solutions are preferred as these minimize the need for calibration 

data, which is difficult to obtain for evacuations. To recap, the link 

model solutions were: 

 

1. Average congestion state 

2. Direct implementation of a fundamental diagram 

3. Cell Based Queuing 

4. Congestion outflow limits 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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The first solution is attractive as it is simple. But the level of realism is 

low. Different queues may have very different average traffic states, 

depending largely on the available outflow capacity. This can 

potentially have large consequences for travel time and queue length 

and therewith the number of evacuees. The second solution may 

produce more realistic results, but this is very doubtful. Solution two 

assumes limited instantaneous kinetics, which is a far cry from reality. 

There simply is no theoretical background, not for the instantaneous 

kinematics nor for the limit on density by original queue length. This 

makes the solution unreliable. 

 

The third solution has an inherent precision of queuing dynamics that 

corresponds with the time step of dynamic traffic models. At the same 

time it prevents cell-to-cell flow calculations. The solution covers both 

in- and outflow using kinematic wave theory. Due to the theoretical 

background and the full coverage of traffic dynamics that are currently 

not modelled in EVAQ, this solution is selected for further 

development. 

 

The fourth solution is valid, but only covers a single aspect of queuing 

(the outflow limit). This solution is also selected for further 

development and will actually be a part of CBQ. 

4.7 New dynamic network loading modelling framework 

The new modelling framework of the DNL will remain similar as in 

Figure 2.1 and is given in Figure 4.6. The link model is still based on 

splitting the link into a free flow and a congested part. Potential 

outflow and maximum inflow are still determined from the state of the 

link but the congested traffic states are deduced by the intermediate 

step of CBQ. The node model checks capacity constraints, that now 

also include constraints of the node itself, and determines actual flows. 

Determination of the origin and destination flows has moved from the 

link model to the node model, as the node model determines the actual 

flows. The link model implicitly uses the outcome of the node model by 

calculating the number of vehicles on a link and in the queue. As CBQ 

is based on past outflows, there is now also an explicit feedback from 

the node model to the link model. 
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The complexity of the framework has reduced, but the individual 

modules will increase in complexity. The link model defines the queue 

as multiple cell states based on past outflows instead of a single 

constant state. The node model will additionally check constraints on 

the node.  

4.8 Conclusions 

In this chapter several solutions have been presented that include 

processes that cause NPD into EVAQ. A selection has been made based 

on precision and a preference for theory based models. The link model 

will be expanded with CBQ in order to represent the queue with more 

realism. Both link inflow and outflow can be influenced by this 

representation. Additionally, a limit on congested outflow will be 

introduced within the CBQ framework. For the node model, node type 

specific sub models are needed that evaluate the capacity of conflict 

groups. The new DNL framework has also been presented in which 

there is an explicit feedback from the outflows to the link model as 

CBQ depends on the outflows. 

 

Chapter 5 explains in detail how CBQ works. Chapter 6 will cover the 

node model and sub models for controlled intersections, uncontrolled & 

priority intersections and roundabouts. All these sub models use a Lane 

Choice Model that is also explained. Chapter 7 presents another sub 

model of the node model, the weaving model. It is dealt with 

separately as it does not depend on the Lane Choice Model and is not 

based on existing models or formulas and thus also needs a calibration. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 4.6: Dynamic Network 

Loading framework 
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5. Link model improvements 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

The selected solutions of chapter 4 will now be explained in detail. This 

chapter will elaborate on CBQ. Section 5.1 will explain changes for the 

link model. The link model will be adapted by implementing CBQ. The 

current model will stay in place, separating the free flow and queue 

part. Also the main quantities, link inflow, queue inflow and link 

outflow, remain. This framework is simple but functions well. The 

queue part is however represented by cells, which increases the 

complexity. An intermediate step is added that translates past outflows 

to traffic states in the cells. For the cell at the downstream side of the 

link, a limit on congested outflow will be put into place. This will be 

explained in section 5.1.2. As can be learned from chapter 6, the node 

model will require nodes that resemble actual intersections. A 

consequence of this is that the link model will need to have the ability 

to deal with short links. This is explained in section 5.1.3. A numerical 

example will be given to illustrate the new link model after which 

conclusions are presented.  

5.1 Cell Based Queuing 

CBQ is a new way to represent queuing dynamics in a discrete manner. 

The discretisation is based on the time step used in EVAQ and a 

fundamental k-q diagram. The fundamental diagram can be assumed to 

be triangular [Yperman, Logghe, Tampere, Immers (2005)], resulting in 

a constant congested wave speed. Such a congested wave consists of a 

traffic state moving upstream on a link as vehicles force each other to 

decelerate, or let each other accelerate. As this wave speed is constant, 

the distance covered within a time step is also constant. A link can be 

divided in multiple cells with equal length. Only the last cell can have a 

different length because of the link length not being an integer multiple 

of cell length. Note that the order of cells (first to last) is in the 

direction of the congested wave, which is opposite of the driving 

direction. The cells form an intermediate step to derive potential 

outflow and maximum inflow of the link. This is the main difference 

with existing cell based models where in- and outflow is determined for 

each cell. With CBQ, the states in the cells together determine the 

number of vehicles that can be stored on the link, and the number of 

vehicles that can reach the end of the link. The states can be derived 

from previous link outflows via the fundamental k-q diagram. In Figure 

5.1 a link with four cells is displayed. The first cell has a state based on 

link outflow of the previous time step. The second cell represents a 

congested wave that has travelled two time steps and is thus related to 

link outflow of two time steps ago. For the other cells the same applies 

with an increasing number of time steps in the past. 
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Generally, the flows related to cells g = 1…G of link a have a link 

outflow V equal to the difference of cumulative link outflow of two 

time steps relative to the current time step t. 

 

( ) ( ) ( )1−−−−= gtVgtVgV aaa  

 

Knowing the link outflow that governs each cell state, density K can be 

derived by applying the fundamental k-q diagram. 

 

( ) ( )( )gVfgK aa =  

 

With the equation of flow conservation, a speed W can be determined. 
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So far, each cell has a traffic state based on outflow in the past. These 

states move upstream by interaction between vehicles. This interaction 

is hardly present for vehicles at the first cell. In reality it is often 

observed that even from standing still, vehicles are able to achieve 

outflows near 1800 pcu/h. This flow is usually called saturation flow. 

Here saturation flow is viewed in wider terms, also including achievable 

outflow from speeds above zero. This flow is the basis of limiting 

congested outflow as described in section 4.4 and is denoted as qa
sat. 

Here it is recognized that indeed such a limit is effective on the first 

cell. The first cell is always able to reach qa
sat if the node allows. When 

traffic starts to break down, outflow can be above qa
sat. If this is true, 

vehicles are moving at such a high velocity that it is assumed that the 

flow related to the first cell can be equal to outflow instead of qa
sat. 

Here it is proposed to use the maximum of both as governing flow for 

the speed (not density) of the first cell. 
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Using saturation flow for the first cell also prevents a problem where no 

flow recovery is possible. If outflow is zero at any time step, the speed 

in the first cell will be zero. This makes it impossible for any vehicle to 

reach the link head, again resulting in no outflow. 
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Figure 5.1: Cell states 
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Cell density and speed can be calculated to cell travel time T and cell 

storage S (number of vehicles that fits inside a cell at the cell density) 

using the cell length L. 
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Cell travel time and storage are the crucial quantities to derive 

remaining link storage (maximum inflow) and the number of vehicles 

that can reach the link head (potential outflow). The first step is to 

calculate cumulative quantities. 
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These cumulative quantities might look like the graphs in Figure 5.2. 

Note that cumulative cell length is linear with link length. Also note 

that travel time and storage show similar patterns. This is because high 

densities form high travel times because of low speeds. 
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Equation 5.6 
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Besides these cumulative quantities, the number of vehicles in the 

queue and on the link is also required. 

 

( ) ( )tVtQX aa

q

a −=  

( ) ( )tVtUX aaa −=  

 

Based on the number of vehicles in queue and the cumulative cell 

storage, a queue length can be linearly interpolated. 
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This interpolation is shown graphically in Figure 5.3. 

 

 
 

With the queue length, cumulative queue inflow until the next time 

step (Q(t+1)) can be calculated in the same way as in the original 

model using linear interpolation over link inflow, see Equation A.13. All 

information to calculate maximum inflow and potential outflow is now 

gathered. Queue inflow is known, completing the set of flows that 

make up the link model. 

5.1.1. Maximum inflow 

Maximum inflow has two limits being link capacity per time step and 

remaining storage. Remaining storage will only be limiting if the queue 

spans most of the link. This is equal to the old model but the queue 

densities and therewith the remaining storage will be different. Some 

models, such as the original DNL model by Bliemer (2007), assume that 

for fully congested links, maximum inflow is equal to current outflow. 

Such an approach is ignorant to queuing dynamics and also takes away 

the possibility for gridlock to occur. For these reasons, remaining 

storage is used as the theory of shockwaves is implied if the remaining 

storage is limiting. Remaining storage is defined as the total storage 

(Sa(G)) minus the total current number of vehicles on the link (Xa). 
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5.1.2. Potential outflow 

Potential outflow is seen as the number of vehicles that can reach the 

link end within a time step. If there is no queue (Xa
q = 0), potential 

outflow equals queue inflow as calculated earlier. Queue inflow is 

cumulative, so a difference between two time steps results in potential 

outflow. If there is a queue, potential outflow equals the number of 

vehicles that can reach the link end (V’a
pot) obeying the queued cell 

states. This can be any number of congested vehicles and maybe also a 

few free flow vehicles if the queue is short. 
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Whether free flow vehicles can reach the link head or not, is not known 

beforehand. There are two ways to find out if free flow vehicles can 

reach the link head. The first is to find out if the travel time through the 

queue is shorter than the time step. The second way is to calculate the 

number of vehicles that could reach the link head assuming an infinite 

queue, and then checking if the actual number of vehicles in queue is 

less. Both require some additional steps to calculate V’a
pot as can be 

seen in Figure 5.4 and Figure 5.5. All grey boxes in the figures 

represent linear interpolation steps, that are CPU demanding. Assuming 

that the queue will mostly have more vehicles than the potential 

outflow, it is wise to use option two. This option is usually done after 

two steps and sometimes after three, whereas option one is usually 

done after three steps and sometimes after two. 
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Figure 5.4: Option 1 to 

calculate Va
q´.  

Usually three steps are performed, 

sometimes two steps. 

Queue travel time > time step 
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cumulative inflow and free flow speed. 
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using cumulative queue inflow and the 

total potential cumulative outflow. 
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Option two is mathematically represented in Equation 5.11. Note that 

the class dimension (m) is now included. The steps will be further 

explained. 
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The first step of option two assumes an infinite queue to determine the 

maximum number of queued vehicles that can reach the link head 

within a time step (X’a
q). By linear interpolation, this number can be 

found. 
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This is graphically represented in Figure 5.6. 

 

 
 

If the actual number of vehicles in queue is larger, indeed all vehicles 

beyond location A are queued. It is however not known how many 

vehicles from each class form this flow. To acquire potential outflow for 

class m, τ should be solved from Equation 5.13 (a) and put into 

Equation 5.13 (b). Equation 5.13 (a) describes the following: 
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Figure 5.5: Option 2 to 

calculate Va
q´. 

Usually two steps are performed, 

sometimes three steps. 
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Equation 5.12 
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Figure 5.6: Linear interpolation 

from T to S 

Theoretical number of queued vehicles able to reach link head > vehicles in queue 
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• Cumulative queue inflow at time t-τ equals cumulative flow at 

A at time t, where τ represents the travel time through the 

queue up to point A. Note that this travel time is related to past 

queue lengths and can thus not be determined from the current 

queue length. 

• Cumulative flow at A equals cumulative outflow plus the 

number of vehicles between point A and the link head (X’a
q). 

• From the previous two statements, cumulative flow at point A 

can be removed, resulting in Equation 5.13 (a). 

Equation 5.13 (b) rearranges Equation 5.13 (a) but as all known 

variables are now class specific, the unknown (X’am
q) can be made class 

specific. 
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If the actual number of vehicles in queue is less than X’a
q, a few free 

flow vehicles need to be included, giving X’a
f. These vehicles can travel 

some distance at free flow speed and then go through the (short) 

queue to reach the link head, all within a time step. The queue travel 

time can be linearly interpolated, see Equation 5.14 and Figure 5.7. 
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The time remaining (∆t’a) for the free flow section is given by the time 

step minus queue travel time. 

 
q
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The free flow section from where vehicles are able to reach the link end 

within a time step is defined as lying between points A and B where 

point B is the start of the queue (see Figure 5.8). The length of this 

section is equal to what vehicles at free flow speed can transverse in 

the time step remainder ∆t’a. 
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Equation 5.13 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation 5.14 
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Figure 5.7: Linear interpolation 

from S to T 
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As the queue length is known, the location of point A is now defined. 

Similarly to cumulative queue inflow at point B, a cumulative number of 

vehicles at point A can be determined. The (non cumulative) number of 

vehicles between point A and the link head is equal to the difference 

between cumulative inflow at point A and cumulative link outflow. 

Using an equation similarly to Equation A.13 and subtracting 

cumulative link outflow, the correct number of vehicles that can reach 

the link head is known, see Equation 5.17. Note that τ is one period 

extra as we need current cumulative flow at A and not cumulative flow 

for t+1. 
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Finally, links that are affected by the hazard have an absolute maximum 

number of vehicles, as all later vehicles are unable to continue. The new 

cumulative link outflow may not exceed this value. 

5.1.3. Short links 
As can be learned from the next chapter about the changes to the node 

model, conflicts at intersections are additional constraints that may limit 

the flow over a node. The evaluation of node conflicts requires nodes 

that resemble actual intersections. Common with macroscopic networks 

is to model a cluster of intersections as a single node, such as 

intersections that are simply very close to one another or intersecting 

grade separated highways where many weaving sections, on ramps and 

off ramps may be found. It may be opted to use nodes that represent 

multiple intersections. Such nodes should be defined as type ‘none’, 

conflicts will then not be included. It remains the responsibility of the 

user to verify that conflicts at the specific intersections are not 

significant for the desired model outcome. A better option in terms of 

accuracy would be to model each actual intersection as a node. For the 

described situations this usually involves short links that are a problem 

for the DNL. Links that can be traversed within a time step are 

inconsistent with the relation between link inflow, queue inflow and 

link outflow. The node model thus desires the possibility to deal with 

short links. As described by Taale (2008) there are two methods to 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation 5.16 
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Figure 5.8: Determination of 

location A 
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circumvent this problem. The first is to shorten the time step. This may 

be undesirable concerning the calculation time of the model. The 

second method is to virtually lengthen the links so that the travel time 

is equal to a time step. This would influence the travel time, but as the 

time step is short, the deviation is small. Taale additionally introduces 

steps to perform accurate spillback by using a critical link length that is 

thus different from the virtual link length. A similar approach is 

performed here. CBQ is performed as for all links. The maximum 

number of congested cells, hence the maximum inflow and potential 

outflow, represent the actual link length. However, queue inflow (is link 

outflow if there is no queue) is interpolated from link inflow using the 

virtual length to determine the travel time towards the queue or the 

link head. This thus introduces slight delays but enables the relationship 

between the flows. Practically the virtual lengthening can easily be 

implemented by using the current time step as a maximum limit for the 

time step where inflow is determined. As this is already performed in 

the link model to accurately model fully congested links, nothing 

actually has to change. Only an error message about short links has 

been removed now that the method for short links has been theorized. 

This creates a dynamic virtual length that is equal to the queue length 

and the length that can be traversed within a time step at free flow 

speed together. The dynamic length follows from the use of queue 

inflow, of which the location is dynamic. Most DNL models only use 

link inflow and link outflow, which are at fixed locations. 

5.1.4. Numerical example 
A numerical example for one link will now be shown. The link and 

model parameters are: 

 

Time step:  20 s / 0.005556 h 

Length:   0.35 km 

Maximum speed: 50 km/h 

Lanes:   1 

Capacity:  2000 pcu/h 

Saturation flow: 1500 pcu/h 

Jam density:  150 pcu/km 

Wave speed:  18.1818 km/h 

Last cell factor:  0.465 (last cell is not as long) 

In the queue:  20 pcu 

On the link:  25 pcu 

 

The link has 4 cells for which the various traffic states are calculated as 

below. Outflow V has been deduced from past link outflow. Density 

and speed are derived from the triangular fundamental link diagram. 

 

V (pcu/∆t) 7  6  5  7 

V (pcu/h) 1260  1080  900  1260 

K (pcu/km) 80.7  90.6  100.5  80.7 

W (km/h) 15.6134 11.9205 8.9552  18.5874 
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Note that the first cell (to the right) has higher speed than the last cell 

although their densities and flows are equal. This is because the first 

cell has its speed based on the maximum of its flow and saturation 

flow. From the cell states we can calculate travel time and storage by 

also using the cell length where the last cell has a different length. 

 

L (km)  0.0470  0.1010  0.1010  0.1010 

T (h)  0.0030  0.0085  0.0113  0.0054 

S (pcu)  3.7905  9.1515  10.1515 8.1515 

 

The length, travel time and storage are made cumulative. 

 

L (km)  0.3500  0.3030  0.2020  0.1010 

T (h)  0.0282  0.0252  0.0167  0.0054 

S (pcu)  31.2450 27.4545 18.3030 8.1515 

 

To calculate the queue inflow we need the queue length. As there are 

20 pcu in queue, the queue length spans the first 2 cells and partially 

the 3rd cell. From the cumulative length we can interpolate to find Lq = 

0.2208 km. With cumulative link inflow the queue inflow can be 

determined but this is omitted here. Next the maximum inflow is 

calculated. Capacity equals 11.1111 pcu/∆t but the remaining storage 

is 31.2450 – 25 = 6.245 pcu. The latter is the minimum and thus the 

maximum inflow. Finally the potential outflow needs to be determined 

as the number of vehicles that can reach the end of the link. First, all 

vehicles are assumed to be in queue. The time step is just over the 

travel time of the first cell and the potential outflow would thus be just 

over the number of pcu in the first cell. Indeed the interpolation results 

in 8.2606 pcu. As this is indeed less than the number of pcu in queue, 

the assumption holds and this is potential outflow. 

5.2 Conclusions 

The queue representation of CBQ has been explained. The derivation 

of maximum inflow and potential outflow has been presented as being 

dependant on the cell states. In this way the shockwave theory is 

implicitly included. The link model as described relies on fundamental 

diagrams. These are assumed to be triangular. A triangular fundamental 

diagram is defined by three points, one of which is the origin. The 

capacity point is described by the capacity value and the free flow 

speed. The last point is the jam point. Flow equals zero, a jam density 

needs to be given. The fundamental diagrams are thus given by three 

parameters per link: capacity, free flow speed and the number of lanes, 

which will be multiplied with a network wide jam density per lane. Note 

that an explicit capacity gap is omitted in the fundamental diagram. 

There is however a limit on congested outflow for the first cell. This 

limit requires a saturation flow per link. Additional parameters for the 

link model are thus network wide jam density per lane and a saturation 

flow per link. Saturation flow should be determined carefully. Effects 

from the node and effects from the link should clearly be distinguished. 
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For instance, a 2-lane link ending at an intersection with 4 turn lanes 

should have a saturation flow in the order of magnitude of 2x1800 

pcu/h and not 4x1800 pcu/h. Saturation flow is the maximum outflow 

if the link itself is congested. Turn lanes do not increase this. They are 

designed to buffer stochastic turn flow fluctuations. Flow in EVAQ is 

not stochastic and so turn lanes are insignificant for the link model. 

Generally, the node is not of influence for saturation flow. Saturation 

flow is thus only different for links if human behaviour on the links is 

different. These differences may have to do with level of relaxation and 

the ability to see downstream flow recovery (anticipation). 

 

The next two chapters will elaborate on the new node model. The new 

link and node model will be evaluated in chapter 8. 
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6. Node model improvements 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Chapter 4 has presented and selected solutions to improve the DNL 

model of EVAQ with respect to NPD. Chapter 5 has explained the new 

link model in detail. This chapter will do the same for the node model. 

The main task of the node model is to check the potential outflows to 

constraints by maximum inflow and of the node itself. This results in 

actual link outflows and link inflows. First, in section 6.1 a new 

modelling framework is explained for the node model. Next, the Lane 

Choice Model (LCM) is explained. The LCM is a sub model of other 

node type specific sub models. Sections 6.3 till 6.5 elaborate on the sub 

node models for controlled intersections, uncontrolled & priority 

intersections and (turbo) roundabouts respectively. Another sub node 

model is for weaving sections. This sub node model is presented in 

chapter 7. It is dealt with separately, as it is entirely new while the sub 

node models of this chapter are all based on existing models and 

formulas. Also the weaving model does not use the LCM. A last node 

type that will not be discussed is the ‘None’ node type as this simply 

means that constraints on the node will not be checked. This can be 

useful for origin/destination nodes or nodes that connect connectors to 

the network while there is no actual intersection but rather multiple 

streets connecting to a single road. At the end of this chapter some 

conclusions are given. 

6.1 New node model framework 

In section 3.4.2 it is explained that the current node model only deals 

with the maximum inflow of the connecting links and is ignorant to 

conflicts on the node itself. Depending on the node type (intersection, 

roundabout, etc.) the conflicts have different mechanisms and different 

consequences. The differences are of such an extent that we cannot 

speak of a single node model. In fact, each node type has its own 

model. Common among three of the sub-models is the LCM as 

displayed in Figure 6.1.  

 

 
 

The current node model in EVAQ will stay active, as maximum link 

inflow still needs to be balanced with potential link outflow. The new 

node models will limit flow further if constraints are violated. The order 

of practice will be: 
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Figure 6.1: Sub-models of the 

node model 

(Turbo) 

Roundabouts 

Controlled 

intersections 

Uncontrolled & 

priority intersections 

Weaving, merging & 

diverging sections 

Lane Choice Model 



 
 
 

 

 

 
 42  Network Performance Degeneration in Dynamic Traffic Management  

• Determine potential directional flows by applying split fractions 

from the route choice model on potential outflow. 

• Determine secondary potential directional flows using the sub 

node models. 

• Determine actual directional flows as a result of the critical 

maximum link inflow. 

The application of split fractions on potential outflow may produce 

directional flows in all directions, including a U-turn. In normal 

circumstances this may not be valid as U-turns inhibit some resistance. 

For evacuations however it may be expected that drivers are not very 

sensitive to this. Some movements over nodes may not be possible, 

such as a U-turn on certain turbo roundabouts and a left-turn from an 

on-ramp. The latter can be dealt with by applying separated nodes for 

divided roads. The first can only be dealt with by having a prohibition 

matrix for the node. A complication is however that split fractions add 

up to one. Leaving out a certain movement from a link will violate 

traffic conservation unless the remaining split fractions are recalculated. 

Therefore, split fractions at nodes with a prohibition matrix will be 

recalculated for each link. Note that this recalculation is not performed 

by the route choice model, but is simply an up scaling of the valid split 

fractions. Currently, the node model does not accept separated nodes 

for divided roads as EVAQ is based on a bi-directional network. 

Because of this some definitions will change. Currently, so called joint-

nodes are recognized if the number of outgoing links is two, as this 

would then not be an intersection but more a shape point defining road 

curvature of a two-way road. Intersections have three or more 

downstream links. These definitions assume a network with only bi-

directional roads. In reality there may be directional roads. Joints are 

thus actually nodes where there is one upstream and one downstream 

link. All other nodes form junctions. For route choice to be performed, 

the number of downstream links should at least be two. New node 

definitions are applied: 

• Junctions are all nodes except origins and destinations. This 

may include dead-end nodes, which should not exist in the first 

place. Junctions are modelled as having inherent capacity 

reduction by the sub node models, unless their type is ‘None’. 

For all junctions the maximum inflow is checked. 

• Route nodes are nodes that have at least two downstream links, 

including origin nodes but excluding destination nodes. The 

route choice model is applied for these nodes. Note that the 

route set generation also uses these nodes. 

Currently EVAQ accepts only one downstream link from an origin node. 

All departures are put on this link. EVAQ will be changed to allow 

multiple connector links for which the route choice model is applied. 

Strangely, the route model is already applied for origin nodes. 
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The second step in the node model is the application of the sub models. 

This is done before the maximum inflow checks for two reasons: 

• Flows may interact on the node in a skewed way (priority). If a 

downstream link should limit flow, all flow should be limited by 

the skewed ratios. Therefore, the skewed flows should be 

calculated first. 

• Applying the maximum inflow constraints first would change 

the absolute size of flows that may therefore not accurately 

represent interaction on the node. 

Constraints of the third step, and also some constraints of the second 

step, will reduce all flow over the node with the same factor. Durlin & 

Henn (2007) use a generalized merge model based on the merge model 

by Daganzo (1993) that uses outflow division fractions based on 

number of entering lanes, priority etc. This is neglected here as it is 

assumed that potential link outflow will be representative for the 

number of lanes of a link while the sub node models will deal with such 

things as priority. 

6.2 Lane Choice Model 

The LCM is the first step in three sub node models. The LCM 

determines how drivers select turn lanes at the end of links. This 

behaviour is important as the use of multiple and/or shared lanes 

towards a link is of great influence in the mechanisms of the sub node 

models. This will become evident in the three following sections 

describing the sub node models that use the LCM. Before the LCM is 

explained, a few definitions of common terms will be given. 

 

A turn flow is all flow from one 

link to another. A turn lane is a 

lane at the end of a link that 

can be used to turn certain 

ways over the node. Lane flow 

is all flow from a turn lane. 

Partial flow is part of a lane 

flow belonging to a specific 

turn flow. 

 

Which turn lanes can be used 

to reach the downstream links 

is given in a lane map. The lane 

map is an nxm matrix where n 

is the number of downstream 

links and m is the number of 

turn lanes. It is mostly filled 

with zeros and has a ‘1’ for 

each link reachable from each turn lane. For instance the first element is 

‘1’ indicating that the first (left) turn lane can be used to turn to the 

first (U-turn) link. Each next ‘1’ is in the same row and next column, in 

the next row and the same column or the next row and the next 

column. This prohibits turn conflicts that are not allowed, following 

intersection design practice. A block is a lane map combined with turn 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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flows that will divide over the turn lanes. Finally, the flow-matrix is a 

matrix similar to the lane map but filled with actual partial flows. The 

rows sum up to turn flows and the columns sum up to lane flows. The 

purpose of the LCM is to translate a block into a flow-matrix. 

 

As the name suggests, the LCM is a choice model describing how 

drivers choose their lane. This choice is a stochastic process, but it is 

simplified to a deterministic problem. This consideration is reasonable as 

only capacity conditions are considered and crucial. These 

circumstances form a strong incentive to road users to divide equally 

over the turn lanes. As long as the level of intersection knowledge is 

large enough among the road users, turn lane use will be balanced. This 

principle is very similar to the Wardrop principle [Wardrop (1952)] 

concerning route choice. In fact, here an adapted version of the 

Wardrop principle is used. The Wardrop principle is based on origins 

and destinations with routes between them. People choose their route 

in a way that all used routes have equal and minimal travel time. For 

the LCM the link is the (only) ‘origin’, the downstream links are the 

‘destinations’ and the turn lanes are the ‘routes’. Turn lane selection is 

not performed by route travel time as in the Wardrop principle, but by 

flow. This assumes that drivers experience a lower volume on an 

adjacent lane as an incentive to change to that lane. The larger the 

volume difference, the larger the incentive. The net result is equal lane 

use. In reality drivers cannot observe flow. They can however observe 

density. Assuming the lane speeds to be equal creates a direct 

relationship with flow. The Wardrop principle is adapted as followes: 

 

1. All used turn lanes towards a downstream link have equal total 

flow, including flow towards other downstream links on the 

shared turn lanes. 

2. All possible but unused turn lanes towards a downstream link 

have more total flow than the used turn lanes. 

 

The adapted Wardrop principle assumes that intersections downstream 

have no influence on lane choice, nor do reductions in lanes just 

downstream of the intersection. In reality this is often not true if the 

intersection or lane reduction is nearby. Another assumption is that turn 

lanes have no length. The buffering effect is not included and the link 

itself determines total potential outflow. Turn lanes here merely serve 

as a flow separation. If these assumptions are reasonable or not, is 

subject for further research.  

 

Solving a route choice problem analytically is very complex, even on 

small scale. Therefore an algorithm will be used. This algorithm is 

different than for regular route choice problems. Instead of solving the 

entire problem iteratively, the problem is split into independent sub-

problems that can be solved analytically. There are 2 splitters to derive 

independent sub-blocks that form sub-problems. Independence means 

that there is no overlap between blocks. This can be defined as: 
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• No turn lane within an independent block is used by a turn flow 

that is outside of the block. 

• No turn flow within an independent block uses a turn lane that 

is outside of the block. 

 

The algorithm is displayed in Figure 6.3 and starts at (1) with a block of 

the entire intersection. The first splitter separates independent blocks 

based on the lane map. A new block starts if the next turn flow has no 

shared lane with the last turn flow. If there are no shared turn lanes 

and only dedicated turn lanes, each turn flow is a separate sub-block. If 

an independent block is found, it is forwarded to the second splitter (2). 

The remainder of the original block, if any, is fed back into the first 

splitter (3). The second splitter finds additional independence, as partial 

flows may be zero. This complies with the definition of block 

independence. The zero-partial flows are found by trying to assign flow 

to the turn lanes (4). The lane assignment may return a flow-matrix 

with negative partial flow(s). It is clear that negative flows are 

impossible and so the assignment has failed. This can be solved by 

assuming the most negative partial flow to be zero1. The block is split 

into 2 sub-blocks that are both fed back into the lane assignment (5). If 

all flows are positive, flows are consistent and will be returned (6). The 

splitters split blocks but merge resulting flow-matrices, resulting in a 

single flow-matrix for the entire link. 

 

 
 

The first splitter splits blocks independent of flow, and it is therefore 

not needed to apply the first splitter every time step. Instead, split 

locations will be stored during the model initialisation.  

 

The core of the algorithm is the lane assignment. Here, blocks are 

translated into flow-matrices. Based on the 1st adapted Wardrop 

principle, all lanes are considered to have equal lane flow, which is 

average lane flow. The assignment runs through the lane map starting 

at the first element and works a way to the lower-right corner. For 

every partial flow, one of the following steps is performed: 

                                                   
1 Assuming any or all negative partial flows to be zero can produce inconsistency with the 

adapted Wardrop principle. The most negative partial flow can be assumed to be zero as it is 

most dominated by other partial flows.  This has been made plausible by running many 

randomly generated blocks through the algorithm. All were verified to comply with the 

adapted Wardrop principle without having negative partial flows. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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• If the last (only) turn flow of a turn lane is reached, the 

remainder of average lane flow is assigned. 

• If the last (only) turn lane of a turn flow is reached, the 

remainder of current turn flow is assigned. 

These steps will become more apparent in the LCM example. 

6.2.1. Lane Choice Model example 

An example block will be run through the LCM. The U-turn is omitted 

for clarity. The turn lanes are as in Figure 6.4. 

 

 
 

Together with turn flows into the 5 possible turn directions this results 

in the following block. 

 

 

 

 

 

 

 

The 1st splitter finds independent sub-block 1 since the next partial flow 

has no shared lane with the last partial flow, see Figure 6.5 (A). It is 

forwarded to the 2nd splitter. The remainder (block 2) is re-analysed by 

the 1st splitter and found to be completely dependent. Block 2 will thus 

also be forwarded as such to the 2nd splitter. 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 6.4: Example turn lanes 
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Table 6.1: Example block 
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Figure 6.5: Blocks as split by 

the splitters 
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Block 1 will be run through the lane assignment. Average lane flow is 

(30+20+10)/3 = 20. Since the upper-left partial flow is the last (only) 

turn flow of the first turn lane, this must be the average lane flow of 

20, see Figure 6.5 (B). The partial flow to the right is the last turn lane 

of the first turn flow and must be 30 – 20 = 10. The next partial flow is 

the last (only) turn lane of the second turn flow and is thus equal to the 

second turn flow, which is 20. The next step will generate infeasible 

results. The second lane already has a lane flow of 30 while average 

lane flow equals 20. The next partial flow will be -10 to compensate. 

The final partial flow can be derived in two ways, both resulting in 20. 

All row-sums of block 1 are equal to the turn flows (30, 20, 10) and all 

column-sums are equal to the average lane flow of 20. However, 

partial flows cannot be negative. Assuming that the (most) negative 

flow should actually be zero, block 1 can be split into sub-blocks 1a and 

1b is in Figure 6.5 (C). Note the explicit ‘0’ splitting the sub-blocks. 

Blocks 1a, 1b and 2 are run through the lane assignment resulting in 

Figure 6.5 (D). The partial flows together form this flow-matrix: 

 

 

 

 

 

 

 

 

 

From this it can be seen that all lane flows within the sub-blocks are 

equal and that unused turn lanes have higher lane flows (25 over 10). 

This complies with the adapted Wardrop principle. All row-sums are 

equal to the turn flows. The partial flows will be used in the sub node 

models described in the remainder of this chapter. 

6.3 Controlled intersection model 

Controlled intersections have traffic lights separating conflicting turn 

flows in time. A conflict point between crossing turn flows should thus 

be seen as a turn-by-turn use of infrastructure. The separation in time 

goes further than two crossing turn flows. Groups of multiple turn 

flows can be identified in which each turn flow crosses all other turn 

flows within the group. All turn flows in a group thus have to take 

turns using the infrastructure. The infrastructure has some capacity that 

forms a limit for the turn flows together. 

 

Turn flows that can use multiple turn lanes have multiple conflict points 

with conflicting turn flows. Luckily, for every pair of turn flows, only 

one conflict point is crucial. This is the conflict point where the highest 

partial flows cross. Remember that partial flows are a part of a turn 

flow that is specific to a certain turn lane. Also for conflict groups, only 

these crucial conflict point need to be taken into account. Figure 6.6 

shows that if the conflicts indicated by the dots are not constraining, 

than all other conflicts are also not constraining as they have less flow. 
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Table 6.2: Example flow-

matrix 
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For each conflict group with maximum partial flows p = 1...P the 

following general constraint holds: 

 

conflict

P

p

p Cq ≤∑
=1

max,  

 

The sum of all maximum partial flows (qmax) in a group may not exceed 

conflict capacity (Cconflict). As there is hardly any interaction between the 

turn flows on controlled intersections, the conflict capacity can be 

considered to be equal to effective saturation flow at traffic lights. The 

base value is 1800 pcu/h. As mentioned earlier insection 3.4.2, 

saturation flow can be reduced by many factors. Although most 

reductions are small, their aggregated effect should not be ignored. A 

representative reduction is made up from a peak hour reduction (~0,9) 

and a turn reduction where half of the flows are turning (~0,9). These 

reductions are taken from the program VRIGEN, which is a Dutch 

traffic control design program. Additionally there is also time loss at 

controlled intersections. This follows from yellow time and clearance 

time for safety. The effective time fraction for a standard cycle length 

of two minutes is about 0,9 (Syllabus CT4822). The effective saturation 

flow with all 3 reductions thus becomes 1800*0.93 ~ 1300 pcu/h. 

Setting this as conflict capacity assumes that at any time one of the 

partial flows in the conflict group has a green light. Depending on the 

number of green phases, the number of flows in the conflict group and 

right turns, this may not be true. Figure 6.7 shows a few situations that 

describe the ratio between conflict size and effective green phases. Part 

(A) shows an intersection with four roads. Such an intersection has 

conflicts with three or four phases. As all 3-phase conflicts hold a right 

turn, each green phase facilitates the conflict. Note that this is only 

possible if the right turn has only dedicated turn lanes. Two possible 

phasing schemes of four phases are shown, both facilitate the conflict 

equally. Part (B) shows the same intersection where westbound traffic 

is not possible. This creates a 2-phase conflict without a right turn that 

is not a subset of any other conflict. Again, no matter what specific 

phasing scheme is chosen, they perform equally. As there is no right 

turn in the conflict, only two out of four phases facilitate the conflict. 

Finally part (C) shows the same intersection as in part (B) but with a 3-

phase group. Just as in part (A) all 3-phase groups have a right turn 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 6.6: Conflict group 
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Equation 6.1 
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and are thus facilitated by all green phases if the right turns have only 

dedicated turn lanes. 

 

 
 

The principle of Figure 6.7 can be generalized to the following: 

• The number of green phases is equal to the largest conflict size. 

• Conflicts with a size equal to the number of green phases are 

facilitated by all green phases. 

• Smaller conflicts with a dedicated right turn are facilitated by all 

green phases. 

• Smaller conflicts without a dedicated right turn can use only the 

number of green phases equal to their own size. 

 

For the last set of conflicts, the hourly capacity is not 1300 pcu as the 

conflict has a green light for less than an hour. Depending on the green 

times of the phases the effective time could be anywhere between 0 

and 60 minutes per hour. However, should the conflict be critical it may 

be expected that the green times are balanced towards the specific 

green phases of the conflict given that optimised control is assumed. 

The worse case would thus be an equal demand (green time) per green 

phase if multiple conflicts are more or less critical, giving an effective 

time of sc/ngf where sc is the size of the conflict and ngf is the number of 

green phases. To derive the phase demand, the control scheme needs 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 6.7: Conflict size versus 

green phases 
(A) Valid 3-phase conflict with right 

turn, each green phase 

facilitates the conflict. 

(B) Valid 2-phase conflict without 

right turn, 2 out of 4 green 

phases facilitate the conflict. 

(C) Valid 3-phase conflict with right 

turn, each green phase 

facilitates the conflict. 

Valid: not a subset of any other 

conflict. 

(A) 

(B) 

(C) 

Right turn that is only possible if there are only dedicated right turn lanes 
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to be known. This sort of information is not easily obtained for all 

controlled intersections in a reasonably sized network. It is better to 

apply an average reduction factor, which is half way between optimal 

and worse conditions giving an effective capacity as in Equation 6.2. 
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To check if any conflict group violates the general constraint, the LCM 

is used to derive partial flows. Next, for each link pair (i,j) the 

maximum partial flow (qijmax) is listed in the maximum partial flow 

matrix. Another matrix of the same size holds the total turn flows (qij) 

per link pair. Constraints are defined as a summation of certain 

elements of the maximum partial flow matrix. The conflict group that 

has the highest saturation will be reduced if necessary. Along with it, all 

turn flows and partial flow that come from the same links are reduced. 

Other links are not influenced as vehicles wait on the links and not on 

the node if they are faced with a red light. Still, also on controlled 

intersections vehicles are often seen standing on the intersection, but 

this is because of a reduced maximum link inflow (spillback). This 

should not be confused with conflict points that limit green time and 

therewith link outflow. After this initial reduction of flows, again the 

conflict group that has highest saturation will be reduced, but again 

only if necessary. This continues until all conflict groups are at or below 

conflict capacity. 

 

Given that each individual conflict is not violating the general constraint 

does not mean that the actual capacities are known. Conflicts are 

namely dependant on each other, as different conflicts should assume 

the same share of green time for a specific green phase that is part of 

both conflicts. If we assume there are four phases and one critical 

conflict needs a green-time distribution of 10%-15%-40%-35% while 

another needs 25%-10%-20%-45% it is obvious that together they 

need 25%-15%-40%-45%, which is 125% in total. A reduction of 0,8 

should thus be applied to the green times. This directly translates to a 

reduction of 0,8 of the turn flows. Depending on the green phases and 

the demand distribution, such a reduction can have a large range. A 

single representative value for all situations does not exist. Earlier it was 

chosen to not include the control scheme as this is much input that is 

difficult to obtain. Instead it is assumed that if we use a green phase for 

all flows per link, a representative reduction will be found. Each critical 

conflict will list its green time distribution over the relevant links. The 

maximum green time fractions of all links are added. If the total is 

above one, all turn flows will be reduced accordingly.  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation 6.2 
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6.3.1. Example of the controlled intersection model 

The model will be shown for an example intersection with six links 

(three roads) as shown in Figure 6.8. At the entering links the hourly 

partial flows are shown as calculated by the LCM. Conflict groups and 

the conflict capacities are given. 

 

 
 

For an intersection with 3 roads where all movements are possible, 

there are in total 4 conflict groups. In the example, 2 of the conflict 

groups have demand higher than capacity. 

 

11381600800800max,max, >=+=+ ESNS qq  

13001800800800200max,max,max, >=++=++ SNESNE qqq  

 

As the first conflict group has highest saturation, all partial flows from 

the accompanying links N and E will be reduced by a factor of 

1138/1600 = 0,71. The green time distribution is 50% for N, 50% for 

E and 0% for S. Two partial flows of the second over saturated conflict 

group are also reduced, resulting in a different conflict group demand. 

 

13001511800568142max,max,max, >=++=++ SNESNE qqq  

 

As the reduced conflict group demand of the second group is still 

higher than conflict capacity, partial flows from N, E and S are now 

reduced by a factor of 1300/1511 = 0,86. Partial flows from N and E 

are reduced in total by a factor of 0,71·0,86 = 0,61. The green time 

distribution of this conflict has lower fractions than the previous conflict 

except for link S where 53% is needed. In total the two conflicts need 

50+50+53 = 153%. A reduction of 1/1,53 = 0,65 follows for all flows. 

All resulting partial flows and reductions are shown in Figure 6.9. These 

partial flows are still consistent with the assumptions in the LCM as 

there is one net reduction factor for all partial flows from a link. These 

changes do not influence the relative ratios between partial flows from 

a link. Figure 6.9 also shows that links can be affected by conflict 

capacity into different extends. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 6.8: Example of a 

controlled intersection 

N 

E 

S 

            800 600+200(E) 

           800 600+200(E) 

400 

800 

Conflicts groups   cap.  

1. NS ES     1138 

2. NE SE     1138 

3. SN EN     1300 

4. NE ES SN  1300 



 
 
 

 

 

 
 52  Network Performance Degeneration in Dynamic Traffic Management  

 

 

6.3.2. Permitted conflicts 

So far, only fully controlled intersections without a U-turn have been 

covered. U-turns have been omitted for the simple reason that traffic 

lights do not account for them. In this context the U-turns could be 

viewed as permitted conflicts. Besides U-turns there may be explicit 

permitted conflicts. These are often encountered as a right turn bypass 

or permitted left turns with small flows. As U-turns only conflict with 

turn flows towards the same link, it is expected that the capacity of the 

link will properly deal with these flows. For explicit permitted conflicts, 

several solutions may be applied: 

• For right hand bypasses an additional link could be created. The 

right turn at the intersection itself should then be omitted. 

• Permitted conflicts can be modelled as a non-permitted conflict. 

The consequence of this would be that the number of green 

phases might increase which in turn will decrease capacity of 

conflict groups that are not facilitated by each of the green 

phases. 

• Permitted conflicts could be omitted all together. This is useful 

if the expected flows performing the permitted turns are very 

low. The influence of modelling such a conflict as non-

permitted might be worse than omitting the turn. Note 

however that the influence of modelling a permitted conflict as 

non-permitted is non-existent for regular balanced intersections 

with dedicated right turn lanes as all conflict groups have a 

capacity of 1300 pcu/h. 

6.4 Uncontrolled and priority intersection model 

Uncontrolled intersections have no traffic lights and drivers have to 

regulate infrastructure use by themselves. This is achieved by right-of-

way rules. In the Netherlands, traffic from the right has right-of-way. 

Priority intersections also have no traffic lights. What is different from 

uncontrolled intersections is that one road always has right of way, 

indicated by road signs and road markings. For both intersection types 

it holds that each turn flow has a (possibly empty) set of other turn 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 6.9: Example of a 

controlled intersection with 

reduced partial flows 
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flows that need to get right-of-way. This is also the framework for the 

determination of turn flow capacity for both intersection types.  

 

In the Syllabus CT4822, a model is described that determines the 

capacity of a minor flow (needs to give right-of-way) intersecting with 

a major flow (gets right-of-way). The model is based on headway 

distribution in the major flow and gap acceptance of the minor flow. 

The major flow headways are assumed to be exponentially distributed. 

The model is computed with Equation 6.3. 
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where, 

tcritical = minimum gap acceptance 

h = average headway between following vehicles 

 

A property of the exponential distribution is the ability to add major 

flows into a single value. This is proven in Equation 6.4 where f is a 

reduction factor based on maximum minor capacity. 
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The capacity of each turn flow is thus defined by the sum of the 

accompanying major flows. As turn flows can be minor related to some 

turn flows and major related to others, the capacities cannot be 

determined directly if flows from the same time step need to be used. 

This will require an iterative solution method. Note however that the 

model from the Syllabus CT4822 was derived for hourly averages. If an 

hour is concerned, delay time between major vehicles entering the 

intersection and minor vehicles being influenced are insignificant. If 

however a small time step is concerned, it is evident that not all 

vehicles will actually interact within the time step. Therefore it is 

considered to be equally accurate to use turn flows from the previous 

time step. Minor turn flow capacity can thus be obtained directly. 

 

Using the previous time step as such could potentially introduce 

unstable oscillations between time steps. For instance assume we have 

an empty intersection. If at one moment much traffic would reach the 

intersection from several directions, these flows would be unrestricted, 

as the previous time step had no flow. This unrestricted flow may be 

well above capacity, resulting in no capacity for the time step after 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation 6.3 
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Equation 6.4 
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that. A 2-step cycle will thus exist where much flow allows no flow, 

and no flow allows much flow. To overcome this unstable behaviour, 

major flows are determined by the average of the previous two time 

steps. Still, the first step with traffic would exceed capacity, but at least 

the oscillation is filtered in only a few time steps. This phenomenon 

only occurs with large changes in demand for an intersection from 

several directions at the same time step. 

 

For normal circumstances the minimum gap acceptance is about four 

seconds and the average headway for following vehicles is about two 

seconds. During evacuations it can be expected that the minimum gap 

acceptance is lower. Very low values can also represent the 

unwillingness of minor turn flows to actually give way. A minimum gap 

of zero seconds more or less creates a 50%-50% ratio between the 

major and minor flow. 

 

Up to now the phrase minor/major flow has meant a (sum of) turn 

flow. This is not accurate as turn flows can share lanes with other turn 

flows and/or use multiple lanes. A minor flow should thus be a 

combination of partial flows that use the same turn lane and are faced 

with the same set of major flows. The major flow can still be taken 

from turn flows. If a turn flow is conflicting, all of its partial flows are 

conflicting. Each constraint is thus a group of minor partial flows p = 

1...P and major turn flows f = 1...F as input in Equation 6.5. 
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The following steps need to be performed to acquire the groups: 

1. For each turn lane and for each possible combination of partial 

flows from that turn lane, find the common major turn flows of 

the partial flows.  

2. Discard minor and major sets that are a subset of another minor 

and major set. 

 

These steps are performed once prior to the model run. For a simple 

priority intersection with a 1-lane minor road, Figure 6.10 shows all 

resulting groups of step one. The bottom row can be merged as they all 

have the same major turn flow (only one actually). The last group is 

equal to the merged group. Figure 6.11 shows merged groups if the 

minor road would have two lanes. 

 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation 6.5 
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Figure 6.10: Major/minor 

groups on a priority 

intersection for a 1-lane minor 

road. 
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The LCM is used to derive the partial flows. For all merged groups the 

general constraint is checked. If the minor flows exceed capacity, all 

flows (also outside of the group) from the link will be reduced. The 

reduction is based on the most saturated group per link. 

6.5 Roundabout model 

6.5.1. Regular roundabouts 

Roundabouts are characterized by a one-way circular road to which all 

roads connect. In the Netherlands, traffic on the roundabout has right 

of way. Roundabouts can have one or two lanes. A relatively new 

phenomenon is turbo-roundabouts, but these will be covered in the 

next section. Roundabouts could be placed in the framework of 

uncontrolled and priority intersections, as a group of minor partial flows 

has to give right of way to major turn flows. This would however 

generate poor results. First of all, the LCM is incapable to divide 

intersecting traffic at multi-lane links. Intersecting traffic is traffic on the 

right lane going left and traffic on the left lane going right (or through). 

Also, the so-called pseudo conflict is of significant influence, which the 

uncontrolled and priority intersection model cannot deal with. A pseudo 

conflict is caused by traffic that is perceived as staying on the 

roundabout, but actually exits the roundabout. Drivers reaching a 

roundabout are not always able to distinguish what drivers on the 

roundabout will do. For the Dutch situation a model developed by 

Cetur (1986) and adapted by Bovy (1991) [Yperman & Immers (2003)] 

is able to determine entrance capacity for various layouts. A division of 

traffic over turn lanes is not necessary. The model explicitly deals with 

the pseudo conflict and the number of lanes on the roundabout and on 

the link. The model is based on circulating flow (conflicting) and exit 

flow (pseudo conflict).  

 

 
 

The framework is given in Figure 6.12. The used formula can be seen in 

Equation 6.6. 
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Figure 6.11: Merged 

major/minor groups on a 

priority intersection for a  

2-lane minor road. 
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Figure 6.12: Roundabout 

entrance capacity framework 
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Equation 6.6 
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α = Pseudo conflict influence (0 – 0.8) 

β = Influence of number of lanes on the roundabout (0.6 – 1.0) 

γ = Influence of number of lanes on the entrance link (0.6 – 1.0) 
 

The numerical ranges for the parameters were recommended by Bovy. 

The value for α is related to the distance between C and C’ as shown in 
Figure 6.13. The graph shows a range depending on the exiting flow 

rate and the circulating speed. The flow rate is of influence because 

drivers tend to use their direction indicator more with higher flow rates. 

The speed is of influence as the distance C-C’ is covered in less time. 

The value of α could be made dependent of exit flow and roundabout 
diameter (speed). There is however no validated method to do this. 

Representative values will be used (thick line in Figure 6.13). 

 

 

 
 

 

 

Similarly to the model from the Syllabus CT4822 for minor flow 

capacity, the model from Bovy is for hourly averages determined with 

an iterative method. The time step is however very small and it cannot 

be stated that equilibrium holds for traffic within a single time step. It is 

considered equally accurate to use the flows from the previous 2 time 

steps as with uncontrolled and priority intersection, enabling a direct 

determination of entrance capacity for all links. All that is needed per 

link is a set of turn flows that make up Vcirc and Vexit and the 

parameters. The sets of turn flows and parameters can be determined 

prior to the model run. Often the values for β and γ, and sometimes 
also for α, are the same for all connecting links and can be coupled to 

the node. Links that have no individual parameters can use the 

parameters of the node.  

6.5.2. Turbo roundabouts 

At the time the model from Bovy was developed, turbo-roundabouts 

did not exist. Today they are increasingly common in the Netherlands. 

In terms of capacity and conflicts, the following differences can be 

identified: 

• Drivers have to select a turn lane before entering the 

roundabout. 

• When entering the roundabout, drivers can be faced with zero, 

one or two roundabout lanes, depending from which link and 

which lane they enter the roundabout. 

• Related to the conflicting roundabout lanes, drivers entering the 

roundabout have different sets of partial flows that form Vcirc. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 6.13: Relation between 

distance C-C’ and α. 
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Looking at the differences it can be observed that the model is 

unusable on a link level. Indeed Yperman & Immers (2003) state that 

new formulas should be derived from existing empirical formulas, but 

coefficients could not be calibrated, as there are not many turbo-

roundabouts with the same layout. For this reason Yperman & Immers 

(2003) used micro simulation. Here it is identified that the basics of a 

roundabout are not different at a turbo-roundabout, only the layout is. 

On lane level the same method could be applied. Figure 6.14 shows 

how input can be defined for each lane, accounting for the various 

types of turbo-roundabout approaches. Lanes A & B but also E & F 

have equal properties. Still the lanes need to be modelled individually as 

turbo-roundabouts force the use of turn lanes, that is, the lanes have 

individual demand. The LCM is used to derive this demand. Also, the 

partial flows from the LCM form the flows at H till P. For example, flow 

L is the partial flow from the north to the south and flow H is all partial 

flows from the north and west to the east and north. An interesting 

fact to note is that few entrance lanes have no Vexit, possibly 

contributing to the capacity difference often witnessed between 2-lane 

and turbo roundabouts. All lanes have, evidently, one lane ‘at the link’ 

as the model is performed at lane level for turbo-roundabouts. The 

value for γ is therefore always one. 
 

Just as with uncontrolled intersections, as soon as a link or lane capacity 

is exceeded, all flows from the link are reduced by a single factor. 

 

De Leeuw (1997) developed an extension on the model from Bovy that 

included the influence on capacity of slow traffic (cyclists), which is 

very common in the Netherlands. Slow traffic is not a part of EVAQ and 

is therefore excluded. 
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6.6 Conclusions 

Based on existing models and formulas, models have been developed 

and explained for controlled intersections, uncontrolled & priority 

intersections and (turbo) roundabouts. The LCM is a common sub 

model without parameters that has been developed to model the lane 

choice behaviour at intersections and turbo roundabouts. Generally the 

existing models are used in frameworks that relate all flow over an 

intersection. The parameters of the existing models are already 

calibrated for normal circumstances. Calibration for evacuation 

circumstances is difficult and beyond the scope of this research. In 

chapter 8 it will be evaluated if output of the new models resembles 

data of the microscopic model VISSIM. The next chapter will first 

elaborate on the newly developed weaving model. This model will need 

to be calibrated. The calibration is also performed in the next chapter. 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 6.14: Lane specific 

properties at turbo-
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7. Weaving model 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

This chapter relates strongly to the previous chapter. In the previous 

chapter the new node model and node type specific sub models have 

been explained. This chapter additionally explains the newly developed 

weaving model. The reason for this development is the lack of a 

generally accepted weaving model. First, two existing models from the 

1985 HCM and by Rakha & Zhang (2006) are discussed. The 

theoretical background and drawbacks are mentioned. As these models 

are empirical and layout specific, a flexible theory-based model is 

desired. The new weaving model is explained in section 7.2. In section 

7.3 the new weaving model is calibrated. At the end of this chapter 

some conclusions are made. 

7.1 Existing weaving models 

Weaving sections are found at highways where an on-ramp is closely 

followed by an off-ramp (<1500m). The on-ramp and/or off-ramp can 

also be replaced with a 2nd highway. Vehicles may have to change lanes 

to arrive at the desired downstream link. Merge sections are equal to 

weaving sections but without the off-ramp. Diverge sections are equal 

to weaving sections but without the on-ramp. Merge and diverge 

sections can be seen as special cases of a weaving section. They can be 

modelled by a weaving section model if demand for or from the 

missing ramp is zero. No generally accepted model to determine 

weaving section capacity exists. Models do exists such as the 1985 

HCM approach described in the Syllabus CT4821 and a model by 

Rakha & Zhang (2006). The latter appears to be able to determine 

capacity with reasonable accuracy. These models do however have 

drawbacks. The models are layout specific and are determined 

empirically. If a layout is found that is not dealt with in these models, 

there is no way to interpolate or extrapolate the underlying mechanism 

of capacity reduction to the new layout. Both models assume that 

capacity reduction is caused by ‘turbulence’ by the lane changing 

behaviour. The net capacity is measured either from reality or a 

microscopic model, and the result is mathematically fitted to functions 

that are thought to describe the following factors influencing the 

amount of turbulence: 

• Demand pattern 

• Speed differences between merging roads 

• Percentage of trucks 

• Weaving section length 

The demand pattern is often specified as having a volume ratio 

(weaving flow over total flow) and weaving ratio (smallest or off-ramp 

weaving flow over all weaving flow). Speed differences influence 

deceleration behaviour and therewith the amount of turbulence. 

However, at capacity conditions, it can be assumed that drivers adapt 

their speed to more or less match the speed on the other road. The 
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effect of speed differences thus disappears for capacity estimations. 

Rakha & Zhang (2004) show that speed differences are indeed not a 

significant factor. They also show that the percentage of trucks can be 

translated into pcu by the 2000 HCM method. For now this is not 

necessary as EVAQ has only one mode, being passenger cars. Weaving 

section length is thought to force lower speed to compensate the 

reduction in time to weave. These lower speeds eventually lead to 

lower flows. 

 

Both models describe capacity as the flow just prior to traffic 

breakdown. The assumptions made about the state of the influencing 

factors seem valid for capacity conditions. However, that these factors 

are significantly related to turbulence prior to traffic breakdown is 

unlikely. Prior to breakdown traffic is in free flow state, a traffic state 

that is not characterized by turbulence. In other words, the turbulence 

is insignificant prior to traffic breakdown and can thus not be a 

determining factor of capacity. Turbulence would also mean that 

vehicles need more space resulting in a lower capacity per lane. In 

reality it is often seen that at weaving sections there are lanes that 

actually have more vehicles than on regular sections. For a short while 

at least, drivers may accept very small gaps. 

7.2 New weaving model 

Looking at traffic on weaving sections both in reality and microscopic 

simulations, a more logical cause, also related to the previously 

mentioned factors, can be found. This cause is the choice of lane that 

drivers make before the weaving section. It is often witnessed that the 

right lane of the highway is used at capacity, while other lanes are not. 

This is because traffic that wants to leave the highway prefers this lane. 

Also traffic that stays on the highway might not experience a very 

strong incentive to not use the lane, especially heavy vehicles. If a 

weaving section is short, the preference to use the right lane increases. 

With similar mechanisms the demand for all lanes at the weaving 

section can be explained. Depending on the layout and demand 

pattern, it may be another lane that is critical. Generally we can state 

that weaving section capacity is reached whenever a lane at or just 

before the weaving section is used at capacity. 

 

Here, a new model is developed that looks at lane demand. It is 

thought that drivers will experience some utility for the lane they select. 

In fact, drivers have a preferred movement over the weaving section 

and will select the lane that enables them to make this movement. Any 

movement is defined as a combination of an entrance and an exit lane, 

using the least lane changes needed in between. As drivers may deviate 

from their preferred movement on the weaving section, the utility only 

describes the initial preference and not the actual movement. Still, the 

lane demand at the start of the weaving section may be determined 

with these utilities. As soon as drivers have finished their desired 

movement, additional lane changes are often performed to evenly 

distribute lane demand at the downstream side of the weaving section. 

That is, per downstream link. 
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7.2.1. Weaving section capacity factors 

As mentioned earlier, speed differences and the percentage of trucks 

can be excluded. The demand pattern and weaving section length are 

also excluded as explained below. As no factors remain, capacity will be 

a fixed value that may not be exceeded by demand. 

 

Demand pattern 

Movement utility is expected to be insensitive to demand, as only 

saturated conditions are important. The model therefore does not 

describe under-saturated conditions and behaviour. Utility being 

insensitive to demand may seem counter-intuitive, but the demand 

pattern still defines capacity. Demand is namely divided by the utilities. 

The more weaving traffic, the more weaving traffic assigned to the best 

weaving movement, the higher the lane demand, the lower the 

weaving section capacity. 

 

Weaving section length 

Weaving section length is thought to be an influence on the utility 

itself. However, for weaving sections that are designed following the 

Dutch standards (see NOA), the lengths are such that the influence is 

often insignificant [Vermijs (1998)]. Note that the negative influence of 

the weaving section length is large for very short weaving sections, but 

quickly reduces as weaving section length increases. Therefore the 

Dutch standards avoid short weaving sections in the first place. Still, the 

length may be significant in some cases, but this will be considered later 

on. For now the weaving section length is ignored. 

7.2.2. Weaving movement utility factors 

Factors contributing to the utility for the movements have not yet been 

recognized. An obvious factor is the number of lane changes that needs 

to be made. Each lane change has some disutility (ulc). Complicating 

design features are tapers at both the merge and diverge locations. For 

example at the merge taper, many vehicles may perform a lane change. 

Vehicles on the taper lane either merge with the main road or select the 

right lane. Vehicles on the right lane of the highway may also change a 

lane to the left. Lane capacity thus needs to be considered after the 

merge taper. The utility should describe the net utility of all choices 

made prior to this point, including the taper. If there is no merge taper, 

this is equal to the utility just before the weaving section. If there is a 

merge taper, the downstream lane that it merges with will have 

disutility (uta). This disutility will deviate traffic from the taper lane, but 

also from the right lane of the highway. Note that this disutility does 

not describe the preferred movement prior to the weaving section, but 

prior to the critical section as in Figure 7.1. The utility per movement 

from lane i to lane j can be calculated as in Equation 7.1. 
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pre∇  Adjustment array for the lane number translating the lane 

 number before the critical section to the lane number inside the 

 critical section. This translation is needed to account for a taper.  

post∇  Adjustment array for the lane number translating the lane 

 number after the critical section to the lane number inside the 

 critical section. This translation is needed to account for a taper. 

d0 Dummy variable, one if lane i is the merging taper lane or 

 merging with it, zero otherwise.  

rt Number of the merging taper lane, zero if there is no merging 

 taper lane. 

 

 

7.2.3. Flow distribution and peak demand 

The utilities can be represented in an m-by-n matrix where m is the 

number of lanes entering the weaving section (including a possible 

taper lane) and n is the number of lanes leaving the weaving section 

(also including a possible taper lane). For each from- and to-link 

combination, the actual flows performing certain movements can be 

found using the logit model in Equation 7.2, assuming the utilities to be 

independent and identically Gumbel distributed. 
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where, 

qij
AB Flow from link A to link B making the movement from lane i to 

 lane j. 

qAB All flow from link A to link B. 
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Figure 7.1: Critical section 

related to tapers 
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Equation 7.2 
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d1 Dummy variable, one if the movement is from link A to link B, 

 zero if not. 

uij Utility to perform the movement from lane i to lane j. 

λ Logit scale factor, here equal to one. 

pre Array with road numbers (one or two) of lanes prior to the 

 weaving section. 

post Array with road numbers (one or two) of lanes after the 

 weaving section. 

 

Assigning flow to all utilities, we have an m-by-n matrix with flows. If 

there is a merging taper, two rows can be merged. Note that this 

addition is valid as only the net choices determining the situation at the 

start of the critical section are considered. Each row now describes the 

demand of a lane at the start of the critical section. Often, this is not 

the exact location where maximum lane demand is found. Especially for 

type B weaving sections, where one weaving flow has to perform at 

least two lane changes, the influence of vehicles that change over a 

lane is high and found somewhere downstream of the start of the 

critical section. The exact location is not important, the additional lane 

demand however is. In this context one would also think of other flows 

that move from or to a lane, but as stated earlier, the utilities do not 

describe actual movements, but rather preferred movements. Weaving 

traffic that changes over a lane is a certain demand for this lane while 

all other flows will tend to distribute around the peak demand (in 

space). An additional variable (fco) is introduced, describing a fraction of 

weaving flow over a lane at the peak demand (at a non-fixed point in 

space) additional to the demand at the start of the weaving section, as 

it is suspected that the actual peak demand will be located close to the 

start of the critical section. It can be expected that fco will also capture 

some phenomena that are not explicitly modelled, such as traffic 

performing lane changes from the critical lane at the very start of the 

critical section. What is important is that it gives representative peak 

lane demand although precise behaviour at the critical section is 

uncertain. Weaving traffic performing at least two lane changes here 

thus creates an additional lane demand as in Equation 7.3. 
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where, 

D(r) Additional demand on critical section lane r by weaving flows 

 over lane r. 

d2 Dummy variable describing that a flow must be weaving. One if 

 the movement from i to j is weaving, zero if not. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation 7.3 
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d3 Dummy variable describing that a flow must change over lane 

 r. One if the movement changes over lane r, zero if not. 

 

If any lane’s capacity is exceeded, all flows will be reduced by a single 

factor, assuming equal flow disruption for all lanes. The constraints are 

defined as in Equation 7.4. 
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where, 

'∇  Set of lanes where ( ) rii pre =∇+ . This is usually one lane. 

 Only if  there is a merge taper will this set be two lanes in order 

to  merge the demand of the right lane on the highway and the 

 taper lane. 

peakC  Lane capacity for the peak (rather than average) demand where 

the location (cross section) is not fixed but related to the 

variable location of the peak demand. 

 

Flow over a weaving section is often lower after traffic break down 

than just before traffic break down (capacity). Such a drop in flow 

should not be seen as an attribute of the weaving section itself, but 

rather as a capacity drop of the congested links. In other words, CBQ 

should deal with this. A representative value for saturation flow 

(maximum congested outflow) is thus of importance for links upstream 

of a weaving section. 

7.2.4. Example of the weaving model 

Parameters resulting from the calibration in section 7.3 are: 

 

ulc = -0,95 

uta = -0,17 

fco = 0,79 

Cpeak = 3791 pcu/h 

 

An example will now be presented using the weaving section and 

demand to the left from Figure 7.2. None of the links’ capacity is 

exceeded. The demand to the right is the reduced demand for which 

the calculations will be given. 
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Equation 7.4 
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The lane change utilities are given in Figure 7.3 (A). Note that the taper 

lane (C1) has equal lane change utility as A2. Figure 7.3 (B) shows the 

diverging effect as flows A2 and C1 come together. Figure 7.3 (C) is 

the total utility. Applying the logit model per link combination (boxes in 

thick lines), the flows as in Figure 7.3 (D) result. The three lanes at the 

critical section have a demand of 1471, 3487 and 843 pcu/h 

respectively. These are the row sums of table (D) where A2 and C1 are 

merged. The middle lane at the critical section has additional demand 

from weaving flows A1-D2 and C2-B as these change lanes over lane 

A2-D1. The additional demand equals 0,79x(263 + 409) = 531 pcu/h. 

Total lane demand now reaches 3487 + 531 = 4017 pcu/h. As this 

exceeds peak capacity, a reduction factor of 3791/4017 = 0,94 follows. 

 

 
 

7.3 Calibration of the weaving model 

The weaving model was calibrated to data generated by Fosim 

(www.fosim.nl), which is a microscopic model validated for Dutch 

highways. For the calibration it is important to cover many 

combinations of input in order to let the model represent a wide range 

of possibilities. Input consists of the weaving section layout and the 

demand pattern.  

7.3.1. Weaving layouts 

The selected layouts are all possible layouts following the rules below. 

These represent Dutch weaving sections (see NOA). 

• The number of entering lanes is three, four or five. 

• The number of exiting lanes is three, four or five, but never 

more than one lane different from the number of entering 

lanes. 

• Links with a taper have two lanes. 

• Links next to a link with a taper have at least two lanes. 

• All directions have a minimum of two or less lane changes. 

The resulting layouts are listed in Table 7.1. Five groups are 

distinguished based on layout similarity (not to be confused with 

capacity reduction similarity). Group A exists of standard weaving 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 7.3: Utility and flow 

matrices  B D1 D2 

A1 0 -0,95 -1,90 

A2 -0,95 0 -0,95 

C1 -0,95 0 -0,95 

C2 -1,90 -0,95 0 

 

 B D1 D2 

A1 0 -0,95 -1,90 

A2 -1,12 -0,17 -1,12 

C1 -1,12 -0,17 -1,12 

C2 -1,90 -0,95 0 

 

 B D1 D2 

A1 0 0 0 

A2 -0,17 -0,17 -0,17 

C1 -0,17 -0,17 -0,17 

C2 0 0 0 

 

 B D1 D2 

A1 528 680 263 

A2 172 1483 574 

C1 891 264 102 

C2 409 121 313 

 

(A) Lane change utility (B) Merge taper utility 

(C) Total utility (D) Movement flows 



 
 
 

 

 

 
 66  Network Performance Degeneration in Dynamic Traffic Management  

sections where the entering and exiting lanes are in balance and all 

weaving movements require at least one lane change. Group B layouts 

are similar to group A but the movement weaving to the right needs at 

least two lane changes while the other weaving movement requires 

none. Group C is similar to group A but there is one taper. Group D is 

similar to group B but also here there is one taper. Group E is similar to 

group A but with two tapers. 

 

 

A21 (250m) 

 

A22 (500m) 

 

A31 (417m) 

 

A32 (500m) 

 

A41 (500m) 

 

B12 (833m) 

 

B22 (625m) 

 

B22’ (833m) 

 

B23 (833m*) 

 

B32 (833m) 

 

B32’ (833m*) 

 

C22 (625m) 

 

C22’ (625m*) 

 

C32 (708m) 

 

C32’ (708m*) 

 

D22 (833m) 

 

D22’ (833m*) 

 

D32 (833m*) 

 

D32’ (625m*) 

 

E22 (625m*) 

 

E32 (708m*) 

 

All layouts also have a 2-digit number where the first digit indicates the 

number of entering lanes at the left link and the second digit indicates 

the number of entering lanes at the right link. A taper lane, if present, 

is also included within the second digit. Horizontally flipped (axial) 

counterparts are indicated by an apostrophe. For these the digits 

indicate the outgoing lanes. Vertically flipped (tangential) layouts are 

omitted as tangential movement to the right or left is considered equal. 

For example there is no B21 (nor a B12’ which is equal). 

 

Weaving section lengths given in Table 7.2 were set at the default 

length for each configuration as in NOA. Some configuration were not 

listed and got a length equal to a similar layout. 

7.3.2. Demand patterns 

For each layout, various demand patterns need to be included in the 

calibration process. The left road goes from A to C and the right road 

goes from B to D. EVAQ uses split fractions at the nodes so the same 

fraction from A and B will go to C. The demand pattern can thus be 

defined by an A/B ratio and a C/D ratio. These ratios are rewritten into 

ψA = qA/(qA+qB) and ψC = qC/(qC+qD). The two remaining fraction are 

easily calculated as ψB =1 – ψA and ψD =1 – ψC. The ratios follow some 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 7.1: Calibration layouts 

*) length determined by similar layout 
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rules to prevent situations that either will not reach capacity, or will 

reach capacity of a downstream link rather than the weaving section: 

• There is at least as much traffic as the minimum capacity of link 
C or D. 

• Capacity of links A and B is not exceeded. 
• Capacity of links C and D is not exceeded as this is captured by 

maximum link inflow. 
Mathematically the rules form Equation 7.5. 
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Per layout, up to 25 demand patterns are investigated. First, ψA is 
determined as five equidistant values spanning the allowable range. 

Next, either qA or qB is equal to the corresponding link capacity, 

whichever is critical. The other flow can be determined by the ratio and 

is less than or equal to its corresponding link capacity. Knowing the 

maximum flow at links A and B, the range for ψC can be determined. It 
will also span the range with five equidistant values. In total this gives 

5x5 = 25 demand patterns. Some are however excluded. The corners of 

the ψA/ψC plane neither comply with the definition of a weaving 

section, nor with a merge, nor with a diverge section. All traffic comes 

from one link and goes to one link. The edges of the ψA/ψC plane are 
included as these form merging and diverging situations since one link 

has zero flow. For some layouts and at certain values for ψA, the range 

for ψC consists of a single value. These layouts will have four demand 

patterns less. All resulting ratios are given per layout in Table 7.2. 

 

Information needed to determine the allowable demand pattern is the 

link capacity in Fosim. These were found by excluding trucks, using a 

maximum speed of 100 km/h, and having each of the three Fosim 

driver classes be present for 33,3%. The resulting capacities are 2879, 

5796, 8715 and 11580 pcu/h for one, two, three and four lanes 

respectively. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation 7.5 
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A21 

 

A22 

 

A31 

 

A32 

 

A41 

 

B12 

 

B22 

 

B22´ 

 

B23 

 

B32 

 

B32´ 

 

C22 

 

C22´ 

 

C32 

 

C32´ 

 

D22 

 

D22´ 

 

D32 

 

D32´  

 

E22 

 

E32    

7.3.3. Fosim runs and settings 

Fosim is a stochastic model and multiple runs are needed to get some 

certainty about capacity. The number of runs required is 24, assuming a 

standard deviation of 250 pcu/h in the measured capacity and a 

certainty of 95% that the actual capacity is within a range of ±100 

pcu/h [Dijker &  Knoppers (2004)].  

 

Settings in Fosim were set at the default settings for driver behaviour, 

including the lane change areas. Vehicle and driver composition are 

equal to the link capacity runs with each of the three user classes at 

33,3% and no trucks. The speed is set at 100 km/h as this is common 

in the Netherlands at weaving sections. In order to retrieve information 

from Fosim, two detectors are put into place. The detectors return 5-

minute averages of density, speed and flow. The first detector is 

located 500m upstream of the weaving section. Some congestion does 

not start at the actual weaving section but a bit upstream. This detector 

can register this congestion. A second detector is located at the start of 

the critical section. This detector measures flow able to enter the 

weaving section. Flow is increased from zero to the maximum flow as 

determined by Equation 7.5 in 90 minutes. After this, the maximum 

demand is maintained for 30 minutes. If at any of the detectors average 

speed over the lanes drops below 80 km/h, it is assumed that 

congestion has started. The maximum 5-minute flow before this time at 

detector two is taken as capacity. For each layout and for each demand 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 7.2: Calibration demand 

patterns for each layout. 

In corner A, ψA equals 1; in corner C, 

ψC  equals 1 etc.  
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pattern, the capacities returned by the 24 runs are averaged. Average 

standard deviation of capacity was found to be 266 pcu/h. 24 runs thus 

seems about enough as a standard deviation of 250 was assumed. 

7.3.4. Calibration 

Prior to the actual calibration, a grid-search was performed over the 

four input variables to be sure an absolute minimum of errors is found 

instead of a local minimum. The comparison between Fosim and the 

weaving model is done by flow reduction factors (f), which are one if 

congestion is not found and between zero and one if capacity was 

reached. Errors are defined as |fweave-ffosim|/ffosim, which is an absolute 

relative error. Maximum error, average error and standard deviation are 

multiplied with one another to create a single performance indicator. 

This multiplication yields that an equal relative gain or loss of each 

individual performance indicator is equally bad or good. Absolute 

changes are filtered so that large absolute performance indicators do 

not get the overhand. The grid is defined as in Equation 7.6. A few 

coarse grid searches were performed to ensure a wide enough range. 
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The minimum grid value for the combined performance indicator has:  

 

Average error  = 5,40% 

Maximum error = 25,74% 

Standard deviation = 5,25% 

ulc    = -1.0 

uta    = -0.2 

fco    = 0.7 

Cpeak    = 3750 pcu/h 

 

Next, the weaving model was calibrated using a general minimization 

function in Matlab (fminsearch) with the grid minimum as an initial 

guess. The function feeds a set of variables in a ‘black box’ and receives 

a single result. By changing the input, the function ‘reads’ the black box 

and minimises the result. The black box here is actually a comparison 

between the reduction factors from Fosim and the weaving model. The 

comparison returns the combined performance indicator. The results of 

the calibration are: 

 

Average error  = 5,50% 

Maximum error = 24,03% 

Standard deviation = 5,36% 

ulc    = -0,95 

uta    = -0.17 

fco    = 0.79 

Cpeak    = 3791 pcu/h 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation 7.6 
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All parameters have the expected sign but peak capacity of 3791 pcu/h 

may be observed to be rather high. The value can be made plausible by 

the following reasons: 

- Small gaps 

Drivers allow small gaps at weaving sections, at least for a very 

short period of time during lane changes by themselves or 

surrounding vehicles. 

- Complex process, simple model 

The weaving process is a very complex process. The weaving 

model tries to mimic this process using only four variables. It 

may be expected that parameters will not have their actual 

value as some excluded weaving complexity will pull on the 

parameters. One particular excluded movement is any 

movement from the critical lane before the location of the peak 

demand. Would this be included, peak demand would be lower 

and capacity could also be lower resulting in an equal reduction 

factor. 

- Peak capacity vs. average capacity 

Regular lane capacity values in the range of 2000-2200 pcu/h 

are derived with detectors at a fixed location. A small period of 

time, for instance 5 minutes, is aggregated to derive the 

average traffic state. From average values one cannot make 

conclusions about the maximum allowable demand for a few 

seconds. The latter is however exactly what the lane demand of 

the weaving model is. The location of the peak demand will in 

reality be variable as it relates to the specific locations where 

vehicles are weaving at a particular time. If a detector would 

continuously change its location to the peak demand, higher 

capacity values would be found. These capacities would relate 

to the accepted gaps as mentioned at the first bullet. 

 

Performance is reasonable with a small average error and an acceptable 

maximum error for a macroscopic model. The distribution of absolute 

errors is skewed towards small errors and so the errors close to the 

maximum error are rare, as the standard deviation also indicates. From 

Table 7.3 can be learned that there are only nine errors larger than 

20%. Six of these belong to layout B23 and B32. From the mean errors 

per layout we can conclude that the more lanes a layout has, the less 

accurate the model performs on average. This is logical as layouts with 

more lanes also have more movements that are not explicitly accounted 

for at the peak demand.  
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7.4 Conclusions 

In this chapter a new weaving model has been presented based on a 

new theory that focuses on lane demand and leaves the theory of 

turbulence. A utility based demand distribution results in lane demands 

at the start of the critical section. A peak demand is calculated by also 

including a fraction of certain weaving movements. This results in a 

very local and location variable peak demand that should not exceed 

peak capacity. The resulting performance is reasonable. 

 

The proposed model has some additional features. Merge and diverge 

sections can be modelled by excluding a link. To deal with short 

weaving section lengths, the logit scale factor (λ) can be increased. This 

makes drivers more sensitive to the disutility elements. A calibration for 

this has not been performed. The model can also cope with lane-

specific elements. For instance dedicated lanes for heavy vehicles can 

be taken into account by introducing classes and defining different 

utilities per class. Road marks can be accounted for by setting the 

disutility of some movements to minus infinity. In short, the model is 

very flexible and is easily adapted. 

 

This chapter and the previous chapter have explained the new node 

model while chapter 5 has explained the new link model. The next 

chapter will evaluate the entire new model. 
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8. Evaluation 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

To evaluate all proposed changes from the previous three chapters, the 

various sub models will be evaluated separately in terms of accuracy 

and realism. Separate evaluations make it easier to distinguish 

phenomena that are related to different models. The link model (CBQ) 

will be evaluated in two ways. First, in section 8.1 a hypothetical 

example will be given with a random pattern of link  in- and outflow. It 

is checked whether cumulative flows relate according to shockwave 

theory. In the following, the various node models will be evaluated, 

first qualitatively and than quantitatively by a comparison with VISSIM. 

Networks with a single node and a few connecting links will be 

evaluated by traffic state patterns. Section 8.3 will evaluate the 

significance of the changes to EVAQ. The old and the new version of 

EVAQ will be related to VISSIM results. In section 8.4, the entire model 

performance in terms of CPU and memory will be evaluated. Section 

8.5 will elaborate on the applicability of the new model after which 

conclusions are presented. 

8.1 Link model evaluation 

To evaluate the link model and in particular CBQ, a link with the 

following properties will be tested. 

• Length:   2 km 

• Capacity:  4000 pcu/h 

• Lanes:   2 

• Maximum speed: 100 km/h 

• Saturation flow: 3000 pcu/h 

 

With a time step of 20 seconds and a jam density of 150 pcu/km/lane, 

it follows that there are 24 cells, the last of which is 40% of the usual 

length. Congested shockwaves thus take 23.4 time steps to transverse 

the link. Free flow shockwaves take 3.6 time steps, which is the free 

flow travel time over the link. Three scenarios will be evaluated. The 

first will cover free flow, the second will cover congestion and the last 

scenario will cover a combination. 

8.1.1. Scenario 1: Free flow 

This scenario will show that free flow shock waves are modelled 

correctly. To keep the link fully free flow, outflow will be equal to 

potential outflow. Inflow will be a random fraction in the range [0 ... 

0.7] of maximum inflow. The fraction is fixed for ten time steps. This 

allows recognition of the waves. The maximum of 0,7 of the range is 

useful for scenario 3 where the same randomly generated pattern will 

be used. It balances capacity for inflow and saturation flow for outflow, 

as capacity is higher than saturation flow. In Figure 8.1 it can be seen 

that queue inflow coincides with link outflow. This is consistent with 

the fact that there is no queue. The shockwaves are plotted from 
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several queue inflow values towards link inflow (and outflow, but these 

have no length). The time that the shockwaves span is calculated from 

free flow shockwave speed and free flow distance, it is therefore not 

surprising that indeed the shockwaves take 3,6 periods if there is no 

queue. A validation can however be found in the slope of the 

shockwaves. The value for link inflow is namely taken at time t–3,6 

where the value should match cumulative queue inflow at time t. As 

the free flow shockwaves are indeed horizontal, this is modelled 

correctly. The second graph in Figure 8.1 shows that maximum inflow 

is always equal to capacity. Potential outflow shows the random inflow 

pattern delayed by 3.6 periods. Queue length is always zero. 

8.1.2. Scenario 2: Congestion 

This scenario will show that congested shockwaves are modelled 

correctly. To create a congested link, inflow will be equal to maximum 

inflow and outflow is a random fraction of potential outflow. Also here 

each fraction is maintained for 10 steps to visualize the shockwaves. In 

Figure 8.2 it can be seen that for a fully congested link, link inflow and 

queue inflow do not perfectly coincide. This is because queue inflow 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 8.1: CBQ scenario 1 
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can only be determined from vehicles on the link. For a fully congested 

link, vehicles that flow into the queue in a time step actually come from 

other links. This creates small inconsistencies. Just as for free flow 

shockwaves, the time that congested shockwaves span is calculated 

from the queue length and the congested shockwave speed. Congested 

shockwaves on fully congested links thus indeed span about 23,4 

periods. Again the slope of the shockwaves functions as a validation 

tool. All slopes are similar. Moreover, at this slope the pattern of link 

outflow is repeated at link inflow. In the second graph of Figure 8.2 it 

can be seen that potential outflow can be larger than saturation flow. 

This is however only true when congestion has just started (queue is 

short). Free flow vehicles than still play a role. It can also be seen that 

even with long queues, potential outflow may be smaller than 

saturation flow. The cause of this is queuing dynamics and resulting 

densities together with speeds. Whenever the outflow pattern changes 

value, some oscillation might be visible for the potential outflow. This is 

because a new equilibrium flow needs to be found where the fraction 

of potential outflow generates the same potential outflow for the next 

time step. The effect quickly dampens out and is barely visible in the 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 8.2: CBQ scenario 2 
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cumulative flow. Maximum inflow shows the outflow pattern with a 

delay, representing the congested shockwave accurately. Also inflow 

will find an equilibrium value that is both dependant on itself and 

outflow (with a delay). The queue quickly grows to almost the link 

length. As queue inflow is derived from free flow vehicles, it cannot 

reach full link length. 

8.1.3. Scenario 3: Combined 

This scenario is a combination of the previous two scenarios. Both 

inflow and outflow are based on a pattern. The two patters are 

different from one another, but equal as in the previous scenarios. 

From Figure 8.3 it can be seen that inflow is the same as in scenario 1. 

This is logical, as the queue never spans the entire link. Queue inflow is 

shifted to the left and slightly morphed. This is consistent with the short 

and variable queue length from the second graph in Figure 8.3. Link 

outflow is shaped like a combination of outflow from the previous 

scenarios. For short queue lengths the shape is more similar to scenario 

1. For longer queue lengths the shape is more similar to scenario 2. This 

is perfectly logical, as scenario 1 has no queue while scenario 2 does. 
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Figure 8.3: CBQ scenario 3 
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8.1.4. Sensitivity analysis 

A sensitivity analysis was performed to analyse outcome sensitivity for 

each input parameter. Capacity, saturation flow, maximum speed and 

jam density are either increased or lowered. All but saturation flow 

determine the shape of the fundamental diagram. The 3rd scenario is 

used for a comparison. The eight resulting plots are shown in Figure 

8.4. Outcome appears to be relatively insensitive to maximum speed 

and jam density. As maximum speed defines density at capacity, it can 

be concluded that outcome is rather insensitive to the density 

dimension of the fundamental diagram. The model is sensitive to 

capacity and saturation flow. Total flow appears linear with capacity as 

a capacity of 5000 pcu generates about 5/3rd of flow with a capacity of 

3000 pcu. Saturation flow is a factor determining outflow. A linear 

relation can however not be found as outflow also depends on inflow. 

Still it can be seen that higher saturation flow results in a significant 

increase of outflow for congested circumstances. 

 
Capacity = 3000 [pcu] Capacity = 5000 [pcu] Saturation flow = 2000 [pcu] Saturation flow = 4000 [pcu]

Maximum speed = 80 [km/h] Maximum speed = 120 [km/h] Jam density = 100 [pcu/km] Jam density = 200 [pcu/km]

 

8.1.5. Conclusions 

CBQ is able to model both congested and free flow shockwaves in a 

consistent manner. The effect of using the cell states for potential 

outflows is valid as potential outflow is often smaller than saturation 

flow during congestion. Saturation flow thus functions as an upper limit 

of congested outflow. Outcome is sensitive to capacity and saturation 

flow. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 8.4: CBQ sensitivity 

analysis 
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8.2 Node model evaluation 

8.2.1. Controlled intersections 

To evaluate the mechanism for controlled intersections a regular 

intersection with four roads will be used as in Figure 8.5. The roads are 

one kilometre long and have a maximum speed of 50 km/h. The north 

and south road have one lane while the east and west road have two  

lanes. Capacity equals 2000 pcu/h/lane and 

saturation flow equals 1800 pcu/h/lane. 

From the north and the south 1000 pcu will 

leave evenly spread throughout an hour. 

For the east and west this is 2000 pcu. 

 

Outflow in the four directions is unlimited, 

except for the west link where there is a 

random limit of about 1/3rd of average 

flow. At some point this will create spillback 

for the central intersection. Split fractions at 

the intersection are random for each time 

step and evenly distributed (on average) 

over all links. The turn lane layout can be seen in Figure 8.5. Outcome 

of the model over an hour was exported into a movie from which 

qualitative observations can be made. The movie displays the traffic 

states of the cells, not the traffic itself. The following observations were 

made: 

 

Shockwaves 

1. Free flow traffic states move downstream with relatively high 

and constant speed. 

2. Congested traffic states move upstream with a relatively slow 

and constant speed. 

 

Traffic state patterns 

3. The east and west link have very similar traffic states moving 

upstream. This is logical as these roads have most traffic and 

are thus usually both part of the critical conflict group at the 

intersection. Their reduction factors are thus equal. 

4. The north and south link have more or less similar traffic states 

moving upstream. Usually all four links are part of the critical 

conflict group, but sometimes either the north or the south link 

is not. Reduction factors are than unequal. 

5. The fact that the links show similar patterns despite random 

split fractions shows that the intersection control is optimal and 

distributes disturbance evenly over the critical conflict group. 

The total flow over an hour is practically equal for the north link 

and south link. The same holds for the east link and west link. 

 

Congestion and spillback 

6. The intersection limits flow from all links as congestion start at 

all links as soon as traffic reaches the intersection. After this 

congestion continues to increase. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 8.5: Controlled 

intersection 
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7. Congestion builds up from the west link towards the central 

intersection. Congested traffic states move upstream. 

8. As soon as the congestion on the west link reaches the central 

intersection, congested traffic states on all links are very similar. 

This is due to the fact that the limit of spillback is dominant. 

Shockwaves from the west link travel over the intersection and 

on to all upstream links. 

 

Controlled intersections behave as expected. Both free flow and 

congested traffic waves move according to shockwave theory. The 

amount of similarity between links in congested traffic states coincides 

with the change of being part of the critical conflict group. Traffic 

states move over the intersection as soon as spillback starts. 

8.2.2. Uncontrolled and priority intersections 

An equal approach as for controlled intersections was performed for 

uncontrolled intersections. Two movies were generated, one where the 

east and west roads have priority and one where there is no special 

priority rule, see Figure 8.6.  

 

 
 

The following observations were made: 

 

1. The shockwaves and congestion and spillback observations 

from controlled intersections also hold for uncontrolled and 

priority intersections. 

2. All links show dissimilar traffic states. Limits on capacity are 

thus link specific. 

 

Without priority for the east and west roads:  

 

3. The north and south link have lower density, higher speeds and 

shorter queues. This is strongly related to the size of the flows 

and the turn lane layout and is thus not a general property of 

uncontrolled intersections. 

4. As soon as spillback occurs, the south link has more capacity 

than the north link and the west link has more capacity than 

the east link. As flow towards the west reduces, so does its 

impact on total flow. The other links, for which the south and 

west link have more priority than their counterparts, thus 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 8.6: Uncontrolled and 

priority intersections 
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increase in their influence. In other words, the north and east 

link are unable to fully utilize their priority as their priority is 

largely towards the congested west link. 

 

With priority for the east and west roads: 

 

5. A similar phenomenon to observation 4 exists for the priority 

intersection. Since priorities are different, so is the size of the 

effect for the north/south and east/west combinations. 

6. The east and west links have low densities and shorter queues 

while the north and south link have very high densities and 

longer queues. This is completely in line with the priority rule 

and the resulting capacities from the links. 

 

Uncontrolled and priority intersection behave as expected. The amount 

of congestion coincides with the amount of priority. The impact of 

spillback and priority towards the link that produces spillback is logical. 

Links that rely on this priority for their outflow capacity show more 

degeneration. 

8.2.3. Roundabouts 

The same framework is again used for the evaluation of roundabouts. A 

2-lane roundabout and a turbo roundabout were evaluated. The turbo 

roundabout was designed for more flow from the east and the west. 

This is displayed in Figure 8.7. 

 

 
 

1. The shockwaves and congestion and spillback observations 

from controlled intersections also hold for roundabouts. 

2. All links show dissimilar traffic states. Limits on capacity are 

thus link specific, this is similar as for uncontrolled and priority 

intersections. 

 

2-lane roundabout: 

 

3. Traffic states on all links, although different, are all within a 

small range. This is dependant on the demand pattern which in 

this case more or less coincides with the capacity pattern. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 8.7: 2-lane and turbo 

roundabout 
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Turbo roundabout: 

 

4. Densities on the east and west link are lower even though the 

demand is twice as high. Capacity is thus more than twice as 

high. This is in line with the design of the turbo roundabout. 

 

Roundabouts show expected traffic states. The effect of a turbo 

roundabout with respect to a 2-lane roundabout follows the design as 

traffic from the west and east has less degeneration. 

8.2.4. Weaving sections 

A calibration for weaving sections has already been discussed in section 

7.3. The interaction with CBQ however has not been covered yet. For 

weaving sections a new framework is used. Figure 8.8 shows the used 

layouts. Demand is shown and split fractions are again random but 

follow the displayed outflow demand on average. Roads are again one 

kilometre long and have a maximum speed of 100 km/h. The capacity 

is 2000 pcu/h/lane and saturation flow is 1500 pcu/h/lane. 

 

 
1. The shockwaves and congestion and spillback observations 

from controlled intersections also hold for weaving sections. 

The link with spillback is however either the off-ramp or the 

highway itself for the merge section. Despite the under 

saturated condition of the links, all layouts have congestion at 

the weaving section before there is spillback. Even the off-

ramp, which is an additional lane, creates congestion. The 

amount of congestion is however less. 

2. For both the on-ramp and the weaving section, both entering 

links are affected equally. This is consistent as the links have 

equal demand and capacity. 

 

All layouts show congestion as predicted by the weaving model based 

on lane choice. Impact on the links is equal as assumed in the weaving 

model. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 8.8: Weaving sections 
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8.2.5. A comparison with VISSIM 

Each of the nodes as in the previous sections is modelled using VISSIM. 

VISSIM is a microscopic model that takes many details into account. It 

forms a good benchmark for model outcome. External spillback is 

excluded as the node capacity and the resulting queue length are of 

interest. Default settings and intersection definitions in terms of links, 

connectors and priorities were defined as indicated by the user manual 

(VISSIM 5.10 User Manual). The simulation period is one hour. Each 

node type is modelled in 30 runs to even out stochastic dispersion. 

Table 8.1 shows the average resulting link outflow capacities of both 

EVAQ and VISSIM. Also the errors are given. 

 

 Link 
Con-

trolled 

Uncon-

trolled 
Priority 

2-lane 

round. 

Turbo 

round. 
Weave 

On-

ramp 

Off-

ramp 

EVAQ 

1 714 971 376 460 483 2192 1981 2924 

2 1016 1370 1862 935 1225 2192 1981   

3 673 975 377 458 482      

4 1054 1517 1835 931 1228       

All 3456 4834 4450 2784 3418 4384 3962 2924 

VISSIM 

1 496 851 480 522 394 2619 2926 3856 

2 999 1091 1967 1094 1094 2208 1316   

3 507 850 512 505 387      

4 954 1496 1969 994 1280       

All 2957 4287 4929 3115 3155 4826 4242 3856 

Errors 

1 44% 14% -22% -12% 23% -16% -32% -24% 

2 2% 26% -5% -14% 12% -1% 51%   

3 33% 15% -26% -9% 24%      

4 10% 1% -7% -6% -4%       

All 17% 13% -10% -11% 8% -9% -7% -24% 

 

Generally the total node capacity is modelled with reasonable precision. 

The off-ramp is modelled worst with an error of 24%, which is in line 

with the error range of the weaving model. Larger errors can be found 

for the specific link outflows. Large errors are found for the on-ramp. 

This largely follows from the assumption that any reduction in the 

weaving model applies equally on both entering links. In VISSIM the 

main highway is affected less than the on-ramp. This follows from 

priority-like behaviour at the merge taper. It should be noted that such 

merging behaviour is difficult for microscopic models such as VISSIM 

and may not be a very good benchmark. Large errors are also found for 

the controlled intersection at links 1 and 3. These links have 1 lane that 

may cause larger reductions of saturation flow than the used 

representative value of 1300 pcu/h. This can be assumed from the fact 

that shared turn lanes with two directions have larger reductions than 

for only a single left or right turn. Turn lanes with three directions 

probably have larger reductions. Statements about smaller errors are 

difficult to make as VISSIM is also (just) a model. In other words, 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 8.1: Link outflow 

capacities from EVAQ and 

VISSIM [pcu/h (including link 

travel time)] 
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different models will always have different results and more certainty 

can only be acquired using actual data from reality. 

 

Appendix C holds plots that display the queue length through time for 

all links of the various nodes. Generally the queue lengths are correct. 

Slight differences between EVAQ and VISSIM are visible at the slope of 

the plots (queue length growth). These differences can be explained by 

the errors from Table 8.1. An over estimation of capacity entails a more 

flat slope (smaller queue) while an under estimation entails a more 

steep slope (larger queue). Besides the differences in slope, a few plots 

appear to have rather different patterns. For these plots can be seen 

that the existence of a queue in itself is uncertain. Either EVAQ or 

VISSIM hardly shows any queue while the other model will show a 

queue that grows slowly on average. The growth of these queues is in 

the order of 100-200 pcu/h. Such a difference can easily follow from 

slight capacity differences. A last observation is that especially for the 

off-ramp scenario, queue length never fully reaches link length. This is 

correct as the link model calculates queue inflow from the current free 

flow vehicles on the link. In other words, for any equilibrium of flow 

through a queue, a certain free flow section is required that can provide 

this flow each time step. The length of this free flow section is 

dependent on the free flow speed, the equilibrium flow and the time 

step size. As flow through the queue (per lane) and maximum speed 

are relatively high for the off-ramp scenario, the free flow section 

required to represent a fully congested link is somewhat long. Spillback 

will however be modelled correctly as this free flow section represents 

the maximum queue inflow. It can thus be concluded that given correct 

constraints by the node model, CBQ is very well able to model the 

queue correctly. 

8.3 New versus old EVAQ outcome 

In the previous sections it was shown that the new link and node model 

show correct behaviour but at the cost of additional calculation time. In 

order to accept additional calculation time, the behaviour should 

deviate significantly from the previous version of EVAQ. To analyse the 

changes all networks from section 8.2 are run through various model 

versions: 

• Old EVAQ 

• Old EVAQ with new link model 

• Old EVAQ with new node model 

• New EVAQ (performed in section 8.2) 

• VISSIM (performed in section 8.2) 

8.3.1. Queue lengths comparison 

Changes are analysed by the queue length, as it is the result of both 

the link and the node model. In this paragraph a visual comparison is 

given for one link and a quantitative comparison is given for all links. 

The visual comparison can be seen in Figure 8.9. It shows the queue 

length through time of 30 runs from the 4th link of the uncontrolled 

intersection. For this link the capacity error of the node model is 1% 

allowing a good comparison also of the link model with the VISSIM 



 
 
 

 

 

 
 84  Network Performance Degeneration in Dynamic Traffic Management  

result. The black line is the average queue length of the 30 runs. The 

smooth flattening of the average queue length follows from more and 

more queue lengths that have reached link length. It is not an expected 

shape of a single queue growth. 

 

 (A) Old EVAQ (B) With new link model 
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 (D) New EVAQ (E) VISSIM 
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From Figure 8.9 (A) and (B) it follows that CBQ produces slightly longer 

queues which follows from lower densities that are related to congested 

flow via a fundamental diagram. These densities are always lower or 

equal to jam density, which the old model uses. Longer queues are also 

found between (C) and (D). From Figure 8.9 (A) and (C) it follows that 

the new node model significantly reduces outflow, as queues are much 

longer with equal density. Finally, from Figure 8.9 (B), (C), (D) and (E) 

we can see that both the new node model and the new link model are 

needed to produce results similar to VISSIM. It can thus be concluded 

that both sub models significantly contribute to the results. 

 

To compare the queue length quantitatively, only the average queue 

length of the 30 runs is used. The queue length grows up to the length 

of the link for many links and for various model versions. Assessing the 

queue length after the modelled hour is thus useless. Instead, for each 

link and for each model version the maximum five-minute queue 

growth is taken. The five minutes may be between any two time steps 

and not only at 0, 5, 10, 15, etc. minutes. Table 8.2 lists the queue 

growth for all models. Also the absolute relative and absolute errors are 

given.  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 8.9: Queue length [m] 

through time [min] as 

determined by several model 

versions 
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Model/version: Old EVAQ Old + link model Old + node model New EVAQ VISSIM 

Link number: 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 

Maximum 5 minute queue length growth [m] 

controlled 24 24 24 24 39 39 39 39 204 335 209 338 270 393 286 395 445 533 446 480 

uncontrolled 25 25 25 25 42 42 42 42 32 192 19 167 60 281 49 236 220 430 291 347 

priority 23 23 23 23 40 40 40 40 400 65 393 73 464 131 452 134 464 5 419 5 

roundabout 24 24 24 24 40 40 40 40 349 348 351 338 436 433 438 433 465 453 476 491 

turbo round. 23 23 23 23 45 45 45 45 335 262 348 249 426 328 421 344 531 483 526 462 

weave 925 925    878 878   240 240    524 524   337 778    

on ramp 925 925    878 878   309 309    570 570   80 418    

N
o
d
e
 t
y
p
e
 

off ramp 1005       1005       100       505       692       

Average/VISSIM: 207 / 50% 214 / 52% 248 / 60% 364 / 89% 411 

Absolute error with VISSIM [m] 

controlled 421 509 422 456 405 494 407 441 240 198 237 142 175 140 160 85         

uncontrolled 195 405 266 322 178 389 249 305 187 238 272 180 160 149 242 111       

priority 441 18 396 19 424 35 379 36 65 59 26 69 0 126 33 130       

roundabout 441 429 452 467 425 414 436 451 116 105 125 153 29 21 38 59 
  

    

turbo round. 509 460 504 439 486 437 481 416 196 220 178 213 106 154 106 118       

weave 588 147   541 100    97 538   187 254          

on ramp 845 507   798 460    228 109   489 151          

N
o
d
e
 t
y
p
e
 

off ramp 313    313     591    187           

Average: 399 380 191 136         

Absolute relative error with VISSIM [-] 

controlled 0,9 1,0 0,9 1,0 0,9 0,9 0,9 0,9 0,5 0,4 0,5 0,3 0,4 0,3 0,4 0,2         

uncontrolled 0,9 0,9 0,9 0,9 0,8 0,9 0,9 0,9 0,9 0,6 0,9 0,5 0,7 0,3 0,8 0,3       

priority 0,9 3,3 0,9 4,0 0,9 6,4 0,9 7,7 0,1 11,0 0,1 14,9 0,0 23,3 0,1 28,0 
  

    

roundabout 0,9 0,9 0,9 1,0 0,9 0,9 0,9 0,9 0,2 0,2 0,3 0,3 0,1 0,0 0,1 0,1       

turbo round. 1,0 1,0 1,0 1,0 0,9 0,9 0,9 0,9 0,4 0,5 0,3 0,5 0,2 0,3 0,2 0,3 
  

    

weave 1,7 0,2    1,6 0,1    0,3 0,7   0,6 0,3          

on ramp 10,5 1,2    9,9 1,1    2,8 0,3   6,1 0,4          

N
o
d
e
 t
y
p
e
 

off ramp 0,5       0,5       0,9       0,3               

Average: 1,54 1,74 1,53 2,55         

 

A general tendency is visible throughout the table. The link model 

alone forms only a slight improvement towards the VISSIM results. The 

node model alone performs much better but still does not resemble the 

VISSIM results. The new EVAQ model is a significant improvement 

relative to the other EVAQ versions. It should be noted that the 

average absolute relative error is worse, but dominated by only two 

links of the priority node that do not actually show large absolute 

errors. In short it can be concluded that the old EVAQ model has queue 

growth that is on average about 50% of the VISSIM queue growth. 

The new EVAQ model is a significant improvement with queue growth 

that is on average about 89% of the VISSIM queue growth. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 8.2: Queue length 

growth of the old and new 

EVAQ and VISSIM 

Absolute error: 

| EVAQ – VISSIM | 

Absolute relative 

error: 

| EVAQ – VISSIM | 

VISSIM 
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8.3.2. Macroscopic Fundamental Diagram comparison 

On link level the new model performs significantly different from the 

old model. Interesting also is to look at the network wide MFD again as 

in section 3.3. The same MFD’s, but generated by the new model, are 

given in Figure 8.10 below the MFD’s of the old model. 

 

Old: C9-10 = 6000 pcu/h Old: C9-10 = 2000 pcu/h 

  
New: C9-10 = 6000 pcu/h New: C9-10 = 2000 pcu/h 

  
 

In the new situation there is a much lower peak flow throughout the 

network. This follows from node constraints that are more limiting than 

link inflow. Also the situation where the exit link has a capacity of 6000 

pcu/h shows significant NPD while this is not true for the old situation. 

Despite different exit link capacities, both new MFD’s look very alike. 

Again this follows from node constraints that are more limiting but also 

the same. The new model still displays ranges where the accumulation 

changes but the flow remains perfectly equal. In the network filling 

phase this is however much less. The remaining horizontal parts in the 

filling phase can be explained as being an equilibrium state of outflow 

and route choice. The network depleting phase still shows large 

horizontal ranges. Just as with the old model this follows from links that 

go from being queued to being empty. The new MFD’s still follow a 

cycle that is dissimilar from the MFD derived by Daganzo & Geroliminis 

(2008). Qian (2009) however explains that this coincides with the used 

modelling framework where density and flow are taken from different 

locations. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure 8.10: Old versus new 

macroscopic fundamental 

diagrams 
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8.4 New versus old EVAQ performance 

Both the new link model and the new node model have additional steps 

in relation with the old model. The cell based representation of queuing 

and the constraints at the node are the main additional steps. Logically 

it follows that additional calculation time is needed. During the 

implementation of the new model into the old model, evaluations were 

done to optimise the speed of the code. Some code from modules that 

were not functionally changed appeared highly inefficient. The most 

significant involved the repetition of a large matrix in order to have 

equal size in the expanded dimension to another matrix. Instead of 

actually expanding the matrix, smart indexing is much more efficient 

and has been implemented. This code is part of the split fraction 

generation. Both old and new code has been optimised in order to 

prevent such needles inefficiencies. Because of this the new model 

might not take as long as one would expect. Table 8.3 shows 

calculation time for several types of evacuations for 1000 time steps on 

a Dual Pentium 1,79 Ghz with 1,99 Gb of memory running on 

Windows XP. The network has 145 links and 61 nodes, 14 of which are 

modelled to have conflicts in the new node model. Other nodes are 

origins, destinations or merely a manner to connect an origin to a road 

with a single connector while there are many small intersections in 

reality. The voluntary evacuation has one class while recommended and 

mandatory evacuations have 23 classes. It can be seen that for the old 

model the split fractions are most significant in terms of calculation 

time, but the matrix expansion is only needed for recommended 

evacuations. In the new model this takes much less time but the new 

node and link models also have significant calculation time. The 

increase in calculation time is 123%, 36% and 742% for voluntary, 

recommended and mandatory evacuations respectively. Recommended 

evacuations take the longest. For these the increase in calculation time 

is very reasonable. Memory use has also increased mainly due to 

additional time steps needed in memory for CBQ. 

 

    Module time [s] 

Model Evacuation Memory 

[Mb] 

EVAQ Route 

set 

Split 

fractions 

Node LCM CBQ 

 Voluntary 26 24 4 2       

Old Recommended 174 87 4 70     

 Mandatory 173 13           

 Voluntary 28 55 4 3 25 7 21 

New Recommended 243 118 5 33 30 7 46 

 Mandatory 242 108     30 8 75 

 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 8.3: Performance for 

1000 steps 



 
 
 

 

 

 
 88  Network Performance Degeneration in Dynamic Traffic Management  

8.5 Applicability of the new EVAQ model 

8.5.1. Dynamic Network Loading model 

The DNL model was adapted and tested within EVAQ. Attention was 

paid to the special circumstances that evacuations create. The resulting 

DNL model is however a module of EVAQ that could easily be used in 

any other DTA model. A common assumption is that of capacity 

conditions. This assumption is equally valid for normal circumstances. 

The capacity condition itself may however need a different definition in 

terms if link capacity, saturation flow, conflict group capacity, average 

headway between following vehicles, minimum gap acceptance etc. 

The mechanism of human behaviour will not be different between 

evacuations and normal circumstances.  

8.5.2. Reversed engineering 

A merit concerning evacuations is that the new DNL focuses on actual 

phenomena such as lane choices and vehicle interaction. The model 

could thus function as a reversed engineering tool to evaluate where 

most friction is present and where measures would be effective to 

decrease evacuation time. Turn movements could be prohibited, 

possibly taking away all friction on an intersection. Of course this 

comes at the cost of having less route possibilities. Also for regular 

conditions there are reversed engineering opportunities. The weaving 

model for example clearly shows that the main cause of a lower 

capacity is inefficient lane choice behaviour. If drivers could somehow 

be stimulated to avoid the critical lane well before the weaving section 

and before congestion actually starts, capacity could be significantly 

increased. Without it there is also a stimulus to change lanes as the 

critical lane will be over saturated but this is, by the definition of the 

stimulus, too late. Besides functioning as a model component, the 

weaving model is also able to estimate capacity for design purposes. 

The turbo roundabout model shows the cause of increased capacity 

with respect to a 2-lane roundabout with more detail than just ‘less 

conflict points’. For specific lanes it is made explicit where the capacity 

increase comes from. 

8.5.3. Additional input 

The newly introduced precision of EVAQ requires more detailed input. 

The network must resemble the actual network where nodes are actual 

intersections. Often for macroscopic models, a single node may 

represent a cluster of intersections. For example intersections that are 

simply rather close to one another or a complete highway junction. 

Such nodes cannot be modelled correctly, as the assumed interaction is 

unrealistic. It is however possible to define such nodes as type ‘none’. 

Interaction will then not be taken into account. This at least provides 

access to CBQ for such networks. Clearly it would be better to define 

the network in line with reality. Besides the obvious consequences of 

additional computation time due to the additional links and nodes, 

there is also a problem that these situations often have short links. As 

explained in section 5.1.3, short links are now possible. The node 

model requires data about the nodes to analyse the conflicts. The input 
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required is difficult to generate by hand as there may be many conflicts 

that need to be defined in one or several small matrices. It is easy to 

confuse which row and column or even additional dimensions represent 

a given conflict. To generate the node input a utility was developed 

that is described in appendix B. It allows graphical and semi-automatic 

generation of the input. Additional input for the entire model is listed in 

Table 8.4. 

 

Element/Component Input/Parameter 

Network-wide 

Links Jam density per lane (kjam) 

Controlled intersections Conflict capacity (Cconflict) 

Uncontrolled & priority intersections Minimum gap acceptance (tcritical) 

  Average headway (h) 

Roundabout Alpha curve 

  Beta for 1 and 2 lanes 

  Gamma for 1 and 2 lanes 

Weave model Lane change utility (ulc) 

  Taper utility (uta) 

  Weaving fraction at peak (fco) 

  Peak capacity (Cpeak) 

Link model 

All links Saturation flow (qsat) 

Node model 

None Turn matrix [optional] 

Controlled intersections Lane map per link 

Uncontrolled & priority intersections Lane map per link 

  Priority (yes/no) per link 

Roundabouts Type (1-lane/2-lane/Turbo) 

   1-lane & 2-lane roundabouts Pseudo conflict distance per link 

  Number of lanes (at the node) per link 

   Turbo Pseudo conflict distance per lane 

  Layout drawing 

Weaving sections Merge taper (yes/no) 

  Diverge taper (yes/no) 

8.5.4. Permitted conflicts 

The node model was designed for several types of intersections. In 

reality more complex intersections may be found. A rather common 

intersection type is controlled intersections with permitted conflicts. 

Usually such conflicts are only found for small flows. They can be 

modelled either as controlled (not permitted) or not existent. The first 

has consequences for the assumed number of green phases while the 

latter takes away a turn possibility.  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 8.4: Additional input 
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8.6 Conclusions 

This chapter has evaluated several aspects of the new EVAQ model. 

Section 8.1 has shown that the shockwave theory is correctly 

implemented in CBQ. Behaviour is as expected. Section 8.2 showed 

similar results for the various node sub model where link outflows had 

expected proportional or skewed patterns. Outflow capacities were 

within a reasonable margin of error. The new model is a significant 

improvement compared to the old model. Capacities and queue lengths 

resemble VISSIM data much closer. The two derived MFD’s of the new 

model show much more resemblance with each other, suggesting a 

single MFD for the given network. Daganzo & Geroliminis (2008) 

theorized this as being a property of networks. Their shape of the MFD 

is however different. 

 

The improvements of EVAQ come at the cost of additional CPU time 

and memory use. For the most critical scenario, voluntary evacuations, 

the gain is reasonable with 36% additional calculation time. Other 

scenarios show large relative gains in calculation time, but the gain is 

reasonable in absolute terms. 

 

The DNL of the new model can be used in other DTA models. It also 

provides a good basis for reversed engineering as the DNL is theory 

based and relies on realistic network. The added precision does 

however require additional input. The node input, error prone if 

manually given, can be given with a semi automated graphical utility. 
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9. Conclusions & recommendations 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

9.1 Conclusions 

The research questions from the introduction can be answered using 

the findings of this research. The research questions of phase one have 

been answered in chapter 3. For completeness the answers are given 

again. The research questions of phase two will also be answered. The 

research objective is revisited. From the answers to the research 

questions it may be concluded that the objective has been reached. 

9.1.1. Phase one 

What processes influence network performance degeneration? 

These processes are discussed in section 3.1 and are flow decrease with 

density increase (fundamental link diagram), capacity drop for 

congested traffic, spillback and gridlock. All these processes originate 

from congestion. From section 3.4.2 it may also be concluded that 

capacity constraints of both the links and the nodes can trigger 

congestion. 

 

What processes are explicitly modelled in EVAQ? 

From chapter 2 it follows that the node model has two causes for 

congestion that both relate to the maximum link inflow. Either the link 

capacity is exceeded or the link is fully congested. Congestion is thus 

explicitly triggered and spillback is explicitly modelled. 

 

What processes are not explicitly modelled, but are an effective part of 

EVAQ? 

Related to spillback, gridlock is also an effective part of EVAQ. It has 

been shown in section 3.3 that the single reduction factor enables 

blocking cycles. 

 

What processes need to be included in order to achieve better 

accuracy? 

Remaining processes that are not covered by EVAQ are flow decrease 

with density increase, capacity drop and capacity constraints of 

intersections. 

9.1.2. Phase two 

What solutions can be created to include additional processes? 

Chapter 4 has mentioned several ideas to include the remaining 

processes. Solutions were: 

• Using an average congested state 

• Directly implement a fundamental diagram 

• Cell Based Queuing 

• Congested outflow limits 

• Additional constraints in the node model 
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The last three have been selected on the basis of realism and with a 

preference for theory based models. 

 

What assumptions need to be made for these solutions? 

Are these assumptions more realistic considering network performance 

degeneration than the assumptions they avoid? 

A comparative overview of assumptions of the old and new model is 

given in Table 9.1. The new assumptions are more realistic. 

 

  Old EVAQ New EVAQ 

Maximum link inflow 

limit 

Capacity & remaining 

storage. 

Id. Remaining storage is however dependent 

on queuing behaviour. 

Potential link outflow 

limit 

Capacity. Capacity for free flow. For congestion it is 

dependant on speeds through the queue. 

Queuing behaviour At a fixed jam density. Kinematic shockwaves initiated by outflow. 

Traffic states are deduced via a triangular 

fundamental link diagram. Speed in the first 

cell is determined by saturation flow. 

Spillback Single reduction factor. Id. Reduction factor is however dependant on 

maximum link inflow. 

Lane choice behaviour Not significant. Equal lane flows. Shared lanes with higher 

flow are not used. 

Controlled intersections Not significant. Shared use of conflict space with an effective 

capacity of 1300 pcu/h. 

Uncontrolled & priority 

intersections 

Not significant. Minor capacity dependant on the sum of 

major flows. 

Roundabouts Not significant. Entrance capacity dependant on conflict and 

pseudo conflict. The same model can be used 

for turbo roundabouts at lane level. 

Weaving sections Not significant. Peak demand determined by movement 

utilities assuming saturated conditions. 

 

It should be mentioned that most sub models are based on existing 

models and formulas for regular conditions while EVAQ is about 

evacuation conditions. It is difficult to determine into what extend 

parameters will change. A good example is for instance gap 

acceptance. It may be expected that drivers care less about forcing 

vehicles with priority to decelerate. 

 

Are the processes indeed significant for network performance 

degeneration? 

Section 8.3 has shown that both the new link and node model 

contribute significantly to results that are closer to VISSIM results. The 

capacities and queues show much more NPD in the new MFD’s. The 

included processes are thus indeed significant for NPD. 

 

What are the consequences of the solutions on calculation time and 

memory use? 

Both increase as more detail is taken into account. The critical scenario, 

voluntary evacuations, has an increase of 36% in calculation time. 

Memory use has increased similarly. EVAQ is still reasonably fast and 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Table 9.1: Old and new 

assumptions 
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given the increase in realism, the additional calculation time can be 

justified. 

9.1.3. Research objective 

Below the research objective from the introduction is given. 

 

 
 

The research objective has been reached. The new EVAQ model is more 

detailed and has a higher level of accuracy. The new DNL is theory 

based enabling a better assessment of evacuation plans. A new 

weaving model and theory is also introduced. As the new DNL relies on 

realistic networks with nodes representing actual intersections it is 

possible to apply reversed engineering to optimise evacuation 

measures. The DNL is also applicable in other DTA models enabling the 

same benefits for regular circumstances. The higher level of detail 

requires additional input that can be graphically given for the nodes. 

Calculation time and memory use have increased with about 1/3rd. This 

is justified by the increased accuracy. 

9.2 Recommendations 

The recommendations are divided into two sections. The first section 

focuses on the theory side of traffic modelling whereas the second 

section focuses on the implementation. The traffic modelling 

recommendations will focus on further research, further development 

of the new DNL model and further development of other EVAQ 

components. The recommendations regarding the implementation 

focus on the code structure of EVAQ and further development of the 

Node Input Generator. 

9.2.1. Modelling recommendations 

Further research regarding assumptions 

From section 8.2 it follows that the DNL model produces good results. 

Some link specific capacities however show large errors. Additionally it 

should be mentioned that not all details of the model were extensively 

researched. For the following assumptions it is recommended that 

further research will be performed: 

• Fixed saturation flow 

Saturation flow is given per link and fixed. Whether saturation 

flow is fixed has not been proven. It may well be that at a 

highway the congestion discharge rate is different if the queue 

drives at 10 or 60 km/h. 

• No influence of waiting areas at intersections 

Uncontrolled and priority intersections often have a waiting 

area in the centre. These are assumed to not influence capacity, 

as vehicles might also have to wait for this area to clear. They 

are constructed to allow easier intersection crossing but 

according to the exponential minor capacity formula, major 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Research objective 
To develop modelling solutions that correctly include processes that 

contribute to network performance degeneration in order to 

improve the accuracy of EVAQ and other DTA models. 
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flows can simply be added and any area in between is not of 

influence. Note that this may only hold if the flow is critical as 

the waiting area itself is than often occupied. 

• No spillback bias due to turn lane layout 

Turn lanes are assumed to have no length. In reality they 

obviously have length that is used as a buffer during the red 

phases. Explicit red and green phases are ignored and averaged; 

turn lanes do not have to function as a buffer. Turn lanes can 

however differentiate spillback for different turn flows from the 

same link. It is not expected that this is significant as turn lanes 

are quickly filled if spillback has any significance. This has 

however not been shown. 

• First order turn lane choice 

In urban networks the assumption that drivers divide equally 

over available turn lanes will often not hold. Second order 

elements such as downstream intersections and lane reductions 

will influence the preference of drivers. In under saturated 

conditions such behaviour is very real. What exactly the 

aggregated result is at saturated conditions is unknown. It 

might be that a bias exists but that the bias is small enough to 

allow enough drivers to use the less attractive turn lane. FIFO 

will than not hold but conflicts at the intersection are modelled 

with correct partial flows. It should be investigated how 

significant the second order influences are. 

 

Further development of the DNL model 

Besides investigating the validity of assumptions, it is also important to 

look at opportunities to further improve the DNL model. 

• Further development of the weaving model using real data 

The weaving model has been calibrated to data from the 

microscopic model FOSIM. It is recommended to enrich the 

model using real data. This can especially be useful to recognize 

lane choice and lane change behaviour. This would require 

number plate data or similar data with other detection 

technologies. Detector data alone will not be as useful. It is also 

recommended to research the influence of weaving section 

length and if the logit scale factor can be used to capture this 

effect. 

• Reduction bias at weaving sections 

Some link specific capacities from the node model are a fairly 

large under or over estimation. These are found for weaving 

sections and controlled intersection. The errors at weaving 

sections mainly follow from a single reduction on both merging 

roads. In reality there is often a bias in the influence as non-

critical lanes can be utilized into different extents. Links to 

weaving sections can easily be the bottleneck for an entire 

region. A capacity error of 40% is than very undesirable. It is 

recommended that the weaving model is extended with an 

effect bias module. The bias may for instance be determined 

differently if the critical lane is directly downstream of the road 

or not. Also a mechanism for lane interaction could be 

determined. Finally it is recognized that merging tapers or clear 
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on-ramps (rather than highway merges) result in different 

driver behaviour.  

• Turn lane specific reduction factors for controlled intersections 

For controlled intersections large errors are made for some but 

not all links. In the Syllabus CT4822 many turn lane specific 

reduction factors are given that may significantly reduce 

saturation flow. It is recommended that the controlled 

intersection model will be extended with the detail of turn lane 

specific reductions. These reductions should not actually reduce 

capacity, but virtually increase the flow as multiple flows are 

subject to a single conflict capacity. The end effect is obviously 

the same. Most detailed reductions can be determined once 

prior to the model run. For shared lanes the reduction is 

dependent on demand and should thus be calculated for each 

time step. The total additional calculation time will be very 

minor.  

• Permitted conflicts 

Controlled intersections often have permitted conflicts, 

including the U-turns. U-turns are currently only covered by 

maximum link inflow. Other permitted conflicts are either 

modelled as a non-permitted conflict or they are excluded all 

together. It is recommended that an investigation is performed 

into the influence of permitted conflicts and that any significant 

mechanisms are included in the controlled intersection model. 

 

Further development of EVAQ 

Changes to EVAQ that have been implemented in this research focus 

on the DNL module. The improved DNL both enables and relies on 

further development of other EVAQ modules. The results of EVAQ will 

only be as good as the least accurate module of EVAQ. Therefore the 

quality of evacuation plans may rely more on other modules. Other 

modules should thus be further developed, or at least be investigated 

for their accuracy. Researchers can rely on a more accurate DNL while 

further developing EVAQ.  

 

Implications for findings using the old model 

Estimations for evacuation time and the number of casualties of the old 

model will generally be too positive. This research has resulted in lower 

capacities at nodes. This logically results in longer queues. Additionally, 

queues are even longer as densities are lower. More spillback and NPD 

results. Measures to improve evacuation time might be needed where 

formally thought unnecessary. In case of a disaster this could 

potentially cost human life. However, as mentioned, other modules of 

EVAQ might form the accuracy bottleneck. 

9.2.2. Implementation recommendations 

Two aspects of the new EVAQ will benefit from a better 

implementation. The first is the coding structure of EVAQ and the 

second is the general development of the Node Input Generator. 
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Code structure 

EVAQ is programmed in Matlab, which is understandable as it works 

intuitive and is easy to learn. Developers of traffic models can thus 

focus on traffic theory instead of the programming language. Matlab 

gives the user a lot of freedom, which often leads to indistinct, less 

maintainable and possibly inefficient code. EVAQ is no exception as the 

split fraction generation shows in section 8.4. The code is indistinct 

because very similar blocks of code exist in multiple places. For 

voluntary and for recommended/mandatory evacuations the main 

model loop, the route set generation and the split fraction generation 

have separate sections while the differences are often very minor. The 

main difference is the existence of a class dimension for 

recommended/mandatory evacuations. Such code organisation is 

indistinct and leads to bugs because changes may not be (equally) 

applied at all instances of the code. It is better to define an algorithm at 

one location. This also makes the code much easier to maintain. For 

EVAQ this can easily be achieved by allowing the class dimension to be 

singleton for voluntary evacuations. A good framework to use is object-

oriented programming. As of version 2008a, Matlab allows objects that 

are easily defined and applied along with regular script-like code. 

Currently, the TUDelft uses version 2007b while Rijkswaterstaat uses 

2008b. At this moment it is thus not feasible to recode EVAQ in an 

object-oriented framework in MATLAB. Other programming languages 

will create large hurdles for further development. It is therefore 

recommended to restructure EVAQ such that all modules are defined 

within a single script or function. Care should be taken to minimise 

memory use when forwarding data from one function to another, as 

MATLAB will in some cases copy variables. 

 

Node Input Generator 

The Node Input Generator was developed within a small time span and 

covers a minimum of features. Input errors can be made, as there are 

only a few rough checks within the program. Furthermore, once node 

input is accepted, there is no way to graphically check the resulting 

input. There has also been no feedback by end-users if the program 

works as expected and is generally user friendly. It is recommended 

that the Node Input Generator will be further developed. 
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Appendix A: EVAQ Algorithm Overview 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

In this appendix the modules reprisented in Figure A.1 will be 

elaborated. Products that are forwarded from one module to another 

will be indicated by boxed equations. First, the demand model will be 

described. The route choice model and the network loading (link and 

node model) follow after that. Finally, travel time estimation and route 

set generation will be discussed briefly. 

 

Multiclass dynamic travel demand model 

Depending on the status of the hazard, location and instructions, 

people will or will not leave before a certain time. This is a binary 

choice that is modelled with a binary logit model. Such a model 

requires, in this instance, a utility to leave, and a utility to stay. What 

actually determines the fraction of people that will have left at a certain 

time is given by the difference between the two utilities: 

 

( ) ( ) ( ) ( ) ( )kkkkVkV
time

m

time

m

revacr

m

stayr

m ξραυαα 210

,, −−=−  

where, 

( ) ( )kVkV
evacr

m

stayr

m

,, −   

  Net utility to stay at origin r for class m at departure  
  time k 

210 ,, ααα  Behavioural parameters 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure A.1: EVAQ Framework 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.1 
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( )krυ    Thread by hazard(s) at origin r and time k 

( ) ( ) ( )( )kkk
time

m

time

m

time

m ωωρ −= 1/   

  Level of enforcement for class m at time k 

( )k
time

mω  Departure enforcement parameter [0…1] for class m at 

  departure time k 

( ) ( )'min ' kkk
mKk

time

m −= ∈ξ   

  Time overlap with instruction for class m at time k 

 

Also of importance is the level of rationality the road users inhibit 

during an evacuation. The response is modelled by an aggregated 

parameter. 

 

( ) ( ) ( )( )kkk timetimetime φφµ −= 1/  

where, 

( )ktimeφ  Departure response parameter [0…1] 

 

The utility is multiplied by this parameter to represent the rationality of 

the aggregated users. The fraction of people that will have left origin r 

for class m at time k can now be calculated with the binary logit model. 
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( ) ( ) ( )( )( )kVkVk
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This proportion is multiplied with the population to determine the 

cumulative number of people that has left. The inflow of link a with 

origin r as tail node can thus be given by (see also Figure A.2, the link 

model): 

 

( ) ( )∑⋅=
m

r

mra kPkU χ  

Multiclass dynamic route choice model 

Route choice is modelled with a path-size logit model. Route overlap is 

taken into consideration. Again a utility is needed, in this case to 

choose a certain route. 
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( )tV
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mp   Utility to take route p to destination s from node/origin 

  n for class m at time t 

210 ,, βββ  Behavioural parameters 

( )tns

pτ   Route travel time from n to s on route p at time t 
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route

m ωωρ −= 1/   

  Level of route enforcement for class m 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.2 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.3: Demand as 

fraction of people 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.4 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.5 
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( )k
route

mω  Route enforcement parameter [0…1] for class m 
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,ξ  Destination s overlap factor (binary) for class m 
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  Factor for route overlap with advised or enforced route  

pl , al   Length of route p, length of link a (part of route p) 

 

For considering the route overlap, a path size formula is used. 

 

λ   Path size parameter 
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  Number of routes in route set P using link a 

 

For route choice, rationality is introduced similarly to departure time 

choice. 

 

( ) ( ) ( )( )kkk routerouteroute φφµ −= 1/  

where, 

( )krouteφ  Route response parameter [0…1] 

 

Route proportions from node/origin n to destination s for class m on 

route p at time t can be calculated with the path-size logit model using 

the above utility and factors. 
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Route choice is modelled not only at the departure, but also en-route. 

In the route choice model, every node is treated separately. Route 

proportions can thus easily be translated to split fractions at the nodes. 

All traffic from the incoming links is aggregated and divided over the 

outgoing links with these split fractions. 

Multiclass dynamic network loading model 

The DNL model is derived from Bliemer (2007). It contains two sub 

models; a link and a node model. Links are split into two sections, a 

free flow section and a congested section as in Figure A.2. The 

congested part might have a length of zero. The link model determines 

how traffic propagates over the link and keeps track of the queue and 

what can potentially leave the link in a time step. The node model 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.6 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.7 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.8: Split fractions 
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determines the amount of traffic that can actually cross the 

intersection, thus determining outflow and inflow of links ahead. 

 

 
 

The dynamic loading model is used slightly different from how it is 

described by Bliemer (2007). The main difference is the discretisation as 

opposed to a continuous definition. This paragraph describes the 

loading model as it is used in EVAQ. Important things to keep in mind 

are the following: 

- The status of time step t is used to derive a new status for time 

step t+1 

- A clear distinction between cumulative and momentary 

quantities should be made. Cumulative quantities are denoted 

as Q . 

- For simplicity, classes are omitted. 

Link model 

First, the link model is applied on every link a. Potential link outflows 

are the main purpose of the link model. These potential flows depend 

heavily on the queue. The number of vehicles at time step t on the link 

is determined as the difference between the cumulative inflow and 

cumulative outflow. 

 

( ) ( )tVtUX aaa −=  

The maximum inflow is determined by either using the flow capacity or 

remaining storage capacity.  

 

( )aaaa XXCU −= maxmax ,min  

 

The number of vehicles in the queue can be calculated as the difference 

between the cumulative queue inflow and the cumulative link outflow. 

 

( ) ( )tVtQX aa

q

a −=  

 

With the number of vehicles in queue and a link queue density, a 

queue length can be acquired. 

 

q

a

q

aq

a
k

X
L =  

 

Next, the potential outflows will be determined. Depending on the 

length of the queue, this might need the cumulative queue inflow of 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure A.2: Link model 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.9 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.10: Maximum link 

inflow 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.11 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.12 

tail node head node
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the next time step. If the number of vehicles in the queue is less than 

the capacity per time step, free flow traffic might also leave the link 

within the next time step. For links b with a

q

a CX < , the free flow 

length and speed are used to determine τ, which is the (non integer) 

number of periods relative to t that vehicles now entering the queue, 

entered the link. The queue inflow is calculated by linear interpolation 

between  τ−t  and  τ−t . 

 

( )  ( )  ( )  ( )  ( ){ }[ ]τττττ −−−⋅−+−=+ tUtUtUtQ bbbb 1  

 

A new number of vehicles in queue is calculated for these links: 

 

( ) ( )tVtQX bb

q

b −+= 1  

 

Note that this is not the actual number of vehicles in queue at time t, 

however it is the number of vehicles that determines the potential 

outflow from t until t+1. 

 

All vehicles ‘in queue’, limited by the capacity, can potentially leave the 

link. 
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For links c with c

q

c CX ≥  the potential outflow is simply the capacity. 

 

c

potential

c CV =  

 

For links o with origin r as tail node, the inflow is determined by 

applying the maximum inflow or the cumulative demand ( )tP
n

n χ⋅  at 

node (origin) n if it is less. 

 

( ) ( ) ( )( )tPUtUtU
n
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Links d connected to destinations cannot have a queue. Therefore the 

cumulative outflow is equal to the cumulative queue inflow as 

calculated for links a. Links d form a subset of links a since 

d

q

d CX <= 0 . 

 

( ) ( )11 +=+ tQtV dd  

 

Potential outflows and maximum inflows have now been determined 

for all links. Also for links connected to origins, the inflow is 

determined. For links connected to destinations, the outflow is 

determined. The node model will handle all other nodes and connected 

link inflows and link outflows. 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.13: Queue inflows 

(Xq < C) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.14 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.15: Potential link 

outflows (b) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.16: Potential link 

outflows (c) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.17: Origin link 

inflows 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.18: Destination 

link outflows 
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Node model 

The node model is applied on every node n. The node has incoming 

links a and outgoing links b. The potential inflow of links b is calculated 

by applying the split fractions on the potential outflow from the link 

model of links a, or on the maximum cumulative outflow 
max

aV determined by the hazard (capacity reduction). 

 

( ) ( )( )tVVVtU aa

potential

a
a

nspotential

b −⋅= max,minψ  

 

If the potential flow is higher than maximum flow on any link b, a ratio 

smaller than one is applied on all flows. This assumes that vehicles will 

wait at the intersection and not before the intersection. Otherwise a 

ratio of one is used. 

 









= 1,min

max

potential

b

b

b U

U
ratio  

 

( ) ( ) potential

bbb UratiotUtU ⋅+=+1  

 

( ) ( ) potential

aaa UratiotVtV ⋅+=+1  

 

The only thing that remains is calculating the queue inflows of links c 

from the link model. This is calculated similarly to links b from the link 

model. 

 

( )  ( )  ( )  ( )  ( ){ }[ ]τττττ −−−⋅−+−=+ tUtUtUtQ cccc 1  

 

All link inflows, queue inflows and link outflows have now been 

calculated for time step t+1 based on the status at time step t. 

Travel time estimation 

Since time is of the essence in evacuations, travel time is an important 

measure used for route choice (optionally together with an instruction). 

Travel time is estimated by assuming a fixed speed for congested 

traffic.  

 

( ) ∞⋅++
−

= ϕ
ϑϑ

τ
q

q

a

am

q

aa

am

LLL
t

max
 

where, 

( )tamτ   Instantaneous travel time of link a for class m 

aL   Length of link a 

q

aL   Queue length on link a 

max

amϑ   Maximum (free flow) speed on link a for class m 

qϑ   Assumed queue speed 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.19 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.20 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.21: Link inflows 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.22: Link outflows 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.23: Queue inflows 

(Xq ≥ C) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Equation A.24: Link travel 

times 
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ϕ   Link affected by hazard (0 or 1) 

 

Links that are hit by the hazard get an infinite travel time. This assures 

that these links will not be chosen. 

Route set generation 

The route set generation algorithm was based on an algorithm by 

Bliemer & Taale (2006). For every OD pair, where all nodes are an 

origin, multiple routes will be generated. For every next route, all link 

costs are determined as the travel time estimation, but travel times are 

made stochastic. For this a normal distribution is used with increasing 

standard deviation for every next route starting with a standard 

deviation of zero. Routes are then generated using a shortest path 

algorithm. Duplicate routes will be omitted.  
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Appendix B: Node Input Generator 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

The changes for the DNL model involve a lot of input for nodes that 

can be specific for the nodes, the entering links or even the entering 

lanes. Much of this input is graphically not complex, but has to be 

represented in many small two or three dimensional matrices that have 

a subset of the following dimension: entrance link, exit link, lane and 

conflict. Creating such input manually will most certainly generate 

errors as conflicts are easily overlooked and matrix elements are easily 

filled in a wrong column and/or row. For these reasons a small utility 

was developed that allows a graphical generation of the node input. 

The utility works from an existing network and will define node input 

dependant on the connecting links and the user input. Generating all 

node input will take some time, it is therefore wise to first define the 

network links and after that the nodes. Adding or deleting links 

afterwards will create inconsistencies between the actual links and the 

links that are assumed to exist for the node model. The Node Input 

Generator currently only works as a generator and not as a 

viewer/verifier of existing nodes and conflicts. 

The Graphical User Interface 

When starting the node input generator program, a blank screen will 

appear. In the menu you can select ‘Network > Load network’ that lets 

you select a Matlab data file. The data file should at least hold the 

EVAQ data: links, nodes, coordinates & mapscale. A map of the 

network will be displayed on the screen as in Figure B.1 (left). 

 

By right-clicking on a node you can select ‘Define input’ that lets you 

generate the node model input. The screen will change to Figure B.1 

(right). By default the node type is ‘None’ as can be seen in the node 

type selection box. This type will not have any simulated conflicts on 

the node. It can be used for origin nodes, destination nodes, nodes that 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure B.1: Network view (left) 

and type ‘none’ (right) 
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function as a link in-homogeneity (for instance a change in maximum 

speed) and nodes that merely function as an entry from a connector 

but are not actually an intersection. Often it is not needed to explicitly 

define these nodes as ‘None’ as all nodes start as such a node. It is 

however sometimes needed to prohibit certain turns over the node. By 

selecting a link (it will become red) and un-checking the ‘All’ checkbox, 

the button ‘Turn Matrix …’ enables. It will show a pop-up window as 

in Figure B.2 (left). 
 

    
 

By clicking on a turn direction in the pop-up window, the turn will be 

enabled (green) or disabled (red). In Figure B.2 (left) the U-turn from 

and to the north is disabled. Click ‘OK’ in the pop-up window to accept 

any changes. This process needs to be repeated for every link from 

which turns are impossible. If all turns are possible, select the ‘All’ 

option. 

Controlled intersections 

By selecting ‘Controlled’ in the node type selection box a few additional 

features become available. The node is now a controlled node for 

which turn lanes need to be defined. Similar to the turn matrix, turn 

lanes are defined per link. To define the turn lanes, select a link and 

click on the ‘Lane map …’ button. You will be asked to give a number 

of lanes. After this a pop-up window will appear as in Figure B.2 (right). 

The number of lanes can be changed at any time by clicking on the 

‘Lane map …’ button again and giving another number of lanes. Any 

existing lane map will be discarded. If you give a number of lanes equal 

to the current lane map (default answer), the current lane map will be 

shown. In Figure B.2 (right) we see two turn lanes from the north. For 

each turn lane, lines in the directions of all downstream links are 

displayed. Green lines mean that from that turn lane, the given 

direction is possible. Red means that the direction is impossible. The 

status can be changed by clicking on the lines. Additional to the arrows 

on the road itself, a U-turn (if possible) should also be included on the 

left lane. By clicking ‘OK’ you accept the changes. The lane map will be 

checked. All lanes should be used and turn directions should not 

conflict. As there are lane maps for each link of a controlled 

intersection, the lane maps are used to define the turn matrix. The ‘Use 

lane maps’ checkbox is checked by default and the lane maps will be 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure B.2: Turn possibilities 

(left) and lane map (right) 
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automatically translated into a turn matrix for the entire intersection. 

The ‘Generate groups …’ button will generate all valid conflict groups 

for the intersection based on all possible moves of the turn matrix. Also 

the effective conflict capacity fraction will be determined for groups 

that cannot be facilitated by all green phases. The algorithm behind this 

button will be explained in a following section for all node types the 

button applies to. 

Uncontrolled and priority intersections 

Uncontrolled and priority intersections are very similar to controlled 

intersections in the context of this program. The only difference is that 

for uncontrolled and priority intersections, links may be defined as 

being a priority link by selecting ‘Priority link’. The selected link will 

become dashed to indicate the priority as in Figure B.3 (left). 
 

 

Another difference is the group generation. The ‘Generate groups …’ 

button will generate all valid minor and major flow groups per link and 

per lane. Minor flows are a set of lane specific partial flows, major flows 

are conflicting turn flows common among all related minor flows per 

group. 

Roundabouts 

Roundabouts are a very different story. First of all, a roundabout type 

needs to be defined. It can be 1-Lane, 2-Lane or Turbo. The first two 

options work similarly. The 1-Lane and 2-Lane roundabout model 

needs alpha, beta and gamma values representing the influence of the 

pseudo conflict, number of lanes on the roundabout and number of 

lanes on the link respectively. The beta value is thus related to the 

roundabout type and will be calculated automatically. Input for alpha 

and gamma can be given per link and/or for the entire node, see Figure 

B.3 (right). The latter is useful if for example most connecting links 

have 1 lane. Parameters that are not given for a link will be taken from 

the node. A mixture of node level and link level input is thus possible. 

To perform these actions on the link level, a link needs to be selected. 

The ‘Generate groups …’ button will generate groups of turn flows that 

make up Vexit and Vcirc per link.  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure B.3: Uncontrolled (left) 

and 1-Lane roundabout (right) 
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Turbo roundabouts 

Turbo roundabouts can exist in many different forms. The same model 

as for 1-Lane and 2-Lane roundabouts is used but on lane level. To 

analyse which partial flows make up Vexit and Vcirc and what the value 

for beta should be, the turbo roundabout needs to be drawn as a set of 

links between various nodes. Figure B.4 (left) shows the default node 

layout for the selected network node. 
 

 

Black squares are the entrance lanes while the grey squares are the exit 

lanes. The grey circles are lanes at the roundabout. Between any two 

links a set of roundabout nodes is given. At any set of nodes, a node 

can be added or removed by right clicking on any node within the set 

and selecting ‘Add node’ or ‘Remove node’. Links can be created 

between the nodes by dragging from one node to another. The driving 

direction will automatically be determined as being against the direction 

of the clock. Links can be deleted by right-clicking on them and 

selecting ‘Delete link’. It is good practice to set the right number of 

nodes at all sets before drawing the links. The drawing can be reset by 

temporarily setting the roundabout type to 1-Lane or 2-Lane. For each 

entrance lane, an alpha value needs to be given. This can be done by 

right-clicking on the node, selecting ‘Set alpha’ and giving the C-C’ 

distance. Figure B.4 (right) shows an example turbo roundabout 

including the alpha values at the entrance lanes. The ‘Generate groups 

…’ button will analyse the drawing to define a set of partial flows per 

lane that make up Vexit and Vcirc. Also the beta value for each lane will 

be calculated. Additionally, lane maps for all links and the turn matrix 

will be created. For this process to work, the turbo roundabout should 

be drawn correctly. Entrance lanes should only connect to the set of 

roundabout lanes in the downstream direction. Exit lanes should only 

connect to the set of roundabout lanes in the upstream direction. 

Finally, circular lanes should never skip a roundabout set. Incomplete 

roundabouts however can be defined, should they ever be 

encountered. Note that dog-bone and oval roundabouts are better 

modelled by a single roundabout with appropriate parameters for the 

pseudo conflict. 

 
 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Figure B.4: Turbo nodes (left) 

and complete with links (right) 
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Weaving sections 

A last node type is a weaving section, also used for on-ramps and off-

ramps. This type is only selectable if the number of entering and exiting 

links is one or two. Also the number of incoming and exiting lanes may 

differ up to one. According to the difference in the number of lanes, 

either a merging taper or diverge taper can be indicated. If the number 

of lanes is equal it is possible to indicated both a merge and a diverge 

taper. 

 

In the network view, all defined node types are made visible as in 

Figure B.1 (left). 
• Red square:  controlled intersection 

• Green square:  uncontrolled or priority intersection 

• Blue circle:  roundabout 

• Yellow triangle: weaving section 

These markers will also be visible after loading a network where 

conflicts are already defined. The specific node input will however not 

be shown after selecting ‘Define input’. The network can be saved 

through the network menu. 

Conflict generation algorithm 

The various algorithms to generate the conflict groups are quite 

extensive in size. For detailed information the reader is advised to look 

at the ‘genGroups’ function in the Matlab code, see appendix D. 

Comments are provided to explain the code, still knowledge of Matlab 

is needed. Here a general description of the various algorithms will be 

given. 

Controlled intersections 

Conflict groups at controlled intersections are groups where all turn 

flows intersect with all other turn flows in the group. A first step is to 

find all crossings between turn flows. This is performed by defining 

straight lines between the entrance and exit links in a circle with a 

radius of one. If two lines intersect at a location within the circle, the 

two turn flows cross. U-turns are ignored, as these are not taken into 

account for the design of traffic light phasing. Step one results in a set 

of 2-phase conflicts. The second step is to loop as long as larger 

conflicts are found. The first loop finds 3-phase conflicts by recognizing 

overlap between two 2-phase groups, but also a difference. Both 

groups should have one turn flow that is not in the other group. If 

these two turn flows are crossing themselves, all turn flows from the 

two groups form a group. This process also applies to larger groups. It 

is important to discard any conflict group that is a subset of a larger 

group. The next loop will find 4-phase conflict groups by analysing the 

3-phase conflict groups. If larger groups are not found, the process 

ends. The set of conflicts is a matrix with the dimensions (entrance_link 

x exit_link x conflict) that is stored at the node level. 
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Uncontrolled and priority intersections 

For these intersections, each group exists out of a set of partial flows 

from a specific lane and all common major flows. Step one is similar as 

for controlled intersection with the difference that U-turns are taken 

into account. Step two is to find all major flows per turn flow from a 

specific link. A turn flow is major if it comes from a priority link while 

the current link is not a priority link, or if it comes from the right while 

both links are or are not a priority link. Step three is to loop over many 

sets of partial flows, from a specific lane, with various sizes. For each 

set the common major flows should be found. Here it is also important 

to discard groups that are a subset of another group. Groups are stored 

as matrices per lane and have the following dimensions for minor (1 x 

exit_link x conflict) and for major (entrance_link x exit_link x conflict). 

The ‘1’ for minor sets unifies the dimension order with major sets and is 

of course related to the link of the specific lane. 

Roundabouts 

At roundabouts conflicts are experience while entering the roundabout. 

Two flows are important, exit flow and circular flow. Exit flow will only 

exist if the first link to the left is an exit link. All turn flows towards this 

link are the exit flow. Circular turn flows are found by looping over all 

turn flows and analysing the total angle performed by a turn flow. If 

this angle is larger than the angle towards the entrance link in question, 

the turn flow goes past the entrance link and is thus part of the circular 

flow. Both sets of turn flows for exit flow and circular flow are stored in 

a matrix per link with the following dimensions: (entrance_link x 

exit_link). 

Turbo roundabouts 

The algorithm for turbo roundabouts involves the creation of lane 

maps, a turn matrix, beta values per lane, exit flow per lane and circular 

flow per lane. All of these are found by ‘travelling’ along the links. A 

common step in this process is to find all nodes (of all types) either 

upstream or downstream from a current set of nodes. Important is to 

also have a set of stop nodes that prevents movements over more than 

a full circle. For the lane map, the stop nodes are the first downstream 

set of roundabout nodes from an entrance node. Possible movements 

are found by travelling further and further downstream. Circular flow is 

found starting at an entrance node and moving downstream once. Stop 

nodes are all nodes at this cross section. Nodes with circular flow 

include all nodes to the right at this cross section, as flow towards these 

nodes crosses with the entrance movement. From the set of circular 

nodes, the algorithm travels upstream to find all partial flows that use 

the nodes. The number of nodes after travelling upstream the first time 

resembles the number of lanes of the circular flow and thus defines the 

beta value. Partial flows are not only defined by the lane and link they 

come from, but also by the link they go to. At every cross section, the 

algorithm travels downstream once to find exit nodes. The 

accompanying exit link will, from that moment on, not be an exit link 

for partial flows, as apparently these partial flows exit the roundabout 

instead of circulating further. Exit flow can be found by travelling 

upstream from the correct exit nodes. Stop nodes are defined just 
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downstream of the exit nodes. What remains is to find the correct exit 

nodes in the first place. This starts very similar as with circular flow. 

After having travelled upstream twice over the roundabout nodes, the 

algorithm travels downstream once to find all exit nodes that hold flow 

that could potentially intersect with the entrance movement. Finally the 

turn matrix is derived from the lane maps. For each lane, the set of 

partial flows for the exit flow and circular flow are stored in matrices 

with the following dimension: (entrance_link x exit_link x lane). 
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Appendix C: VISSIM comparison 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

The following plots show the queue length (vertical axis in meters) through time (horizontal axis in 

minutes). For each link at each node type there is a separate plot that holds 30 model runs. EVAQ plots 

are to the left while VISSIM plots are to the right. Capacity errors (%) of the node model are also given. 

These largely explain the differences in slope. The black line is the average queue length. 
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Uncontrolled intersection 
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2-lane roundabout 
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Appendix D: Matlab code 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Appendix D holds most code that resulted from the various 

developments. Code is given from: 

• EVAQ initialisation 

• Cell Based Queuing 

• Node model 

• Node Input Generator 

Most code is commented and should be self-explanatory. Matlab 

experience, or at least some programming experience, is required. 

EVAQ initialisation 

Two parts of the initialisation code are specific to the new link and 

node model. The first part defines the node model parameters while the 

second part performs initial steps of the link and node model. 

 
001 

002 

003 

004 

005 

006 

007 

008 

009 

010 

011 

012 

% Node model parameters 

CONSTANTS.ConflictCap = 1300;          % controlled:  conflict group capacity [pcu/h] 

CONSTANTS.MinGapAcceptance = 4/3600;   % minor/major: flow gap acceptance [h] 

CONSTANTS.AverageHeadway = 2/3600;     % minor/major: average headway of following vehicles [h] 

CONSTANTS.RoundaboutAlpha = [0 9 21 27 28 inf; .6 .6 .1 .1 0 0]; % must be full positive range 

                                       % roundabout:  multi-linear alpha curve (vs. C-'C [m]) 

CONSTANTS.RoundaboutBeta = [0.95 .7];  % roundabout:  beta for 1 or 2 roundabout lanes 

CONSTANTS.RoundaboutGamma = [1 .65];   % roundabout:  gamma for 1 or 2 link lanes 

CONSTANTS.LaneChangeUtil = -.95;       % weave model: utility of a lane change 

CONSTANTS.TaperUtil = -.17;            % weave model: utility of taper use, or the merging lane 

CONSTANTS.WeaveFraction = 0.79;        % weave model: fraction of weaving traffic over the lane 

CONSTANTS.WeaveLaneCap = 3791;         % weave model: (very local) lane capacity [pcu/h] 

 
001 

002 

003 

004 

005 

006 

007 

008 

009 

010 

011 

012 

013 

014 

015 

016 

017 

018 

019 

020 

021 

022 

023 

024 

025 

026 

027 

028 

029 

030 

031 

032 

% CBQ 

% deduce congested wave speeds from triangular fundamental diagrams 

WaveSpeed = network.LinkCapacity./(CONSTANTS.QueueDensity*network.LinkLanes -... 

    network.LinkCapacity./network.LinkSpeed); 

% devide the links into cells 

network.CongCellLength = (WaveSpeed*CONSTANTS.DeltaK); 

network.CellCount = network.LinkLength./network.CongCellLength; 

network.CellLastFactor = rem(network.CellCount, 1); 

network.CellCount = ceil(network.CellCount); 

network.CellLastFactor(network.CellLastFactor==0) = 1; % integer number of cells 

CONSTANTS.MaxCells = max(network.CellCount); % least amount of past flow in memory 

  

% Node model 

for n = 1:length(conflicts) 

    % calculate controlled capacities from ideal capacity fractions 

    if strcmp(conflicts(n).type, 'Controlled') 

        conflicts(n).node.capacities = conflicts(n).node.capacities*... 

            CONSTANTS.ConflictCap*CONSTANTS.DeltaK; 

    end 

    % initiate previous time step flows 

    if strcmp(conflicts(n).type, 'Uncontrolled') || strcmp(conflicts(n).type, 'Roundabout') 

        % scalar will be expanded to matrix size, after the first loop the 

        % prevTurnFlows will be overwritten with matrices 

        conflicts(n).node.prevTurnFlows1 = 0; 

        conflicts(n).node.prevTurnFlows2 = 0; 

    end 

    % calculate alpha/beta/gamma 

    if strcmp(conflicts(n).type, 'Roundabout') && ~strcmp(conflicts(n).node.type, 'Turbo') 

        % 1-Lane / 2-Lane 

        % node level 

        if ~isempty(conflicts(n).node.alpha) 

            conflicts(n).node.alpha = interp1q(CONSTANTS.RoundaboutAlpha(1,:)', ... 
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                CONSTANTS.RoundaboutAlpha(2,:)', conflicts(n).node.alpha); 

        end 

        conflicts(n).node.beta = CONSTANTS.RoundaboutBeta(conflicts(n).node.beta); 

        if ~isempty(conflicts(n).node.gamma) 

            conflicts(n).node.gamma = CONSTANTS.RoundaboutGamma(conflicts(n).node.gamma); 

        end 

        % link level 

        for i = 1:length(conflicts(n).node.inlinks) 

            if ~isempty(conflicts(n).node.inlink(i).alpha) 

                conflicts(n).node.inlink(i).alpha = interp1q(CONSTANTS.RoundaboutAlpha(1,:)', ... 

                    CONSTANTS.RoundaboutAlpha(2,:)', conflicts(n).node.inlink(i).alpha); 

            end 

            if ~isempty(conflicts(n).node.inlink(i).gamma) 

                conflicts(n).node.inlink(i).gamma = ... 

                    CONSTANTS.RoundaboutGamma(conflicts(n).node.inlink(i).gamma); 

            end 

        end 

    elseif strcmp(conflicts(n).type, 'Roundabout') 

        % Turbo 

        for i = 1:length(conflicts(n).node.inlinks) 

            for j = 1:length(conflicts(n).node.inlink(i).lane) 

                conflicts(n).node.inlink(i).lane(j).alpha = ... 

                    interp1q(CONSTANTS.RoundaboutAlpha(1,:)', ... 

                    CONSTANTS.RoundaboutAlpha(2,:)', conflicts(n).node.inlink(i).lane(j).alpha); 

                conflicts(n).node.inlink(i).lane(j).beta = ... 

                    CONSTANTS.RoundaboutBeta(conflicts(n).node.inlink(i).lane(j).beta); 

                conflicts(n).node.inlink(i).lane(j).gamma = 1; 

            end 

        end 

    end 

end 

  

% LCM (1st splitter) 

for m =1:length(conflicts) 

    if isfield(conflicts(m).node, 'inlink') 

        if ~isfield(conflicts(m).node.inlink, 'lanemap') 

            continue 

        end 

        for n = 1:length(conflicts(m).node.inlink) 

            lanemap = conflicts(m).node.inlink(n).lanemap; 

            % remove impossible turns, but remember correct number 

            turns = find(sum(lanemap,2)>0); 

            map = lanemap(sum(lanemap,2)>0,:); 

            % loop and find independant blocks 

            laneSplits = 1; 

            flowSplits = 1; 

            go = true; 

            i = 1; 

            j = 1; 

            while go 

                if j+1 <= size(map,2) && map(i,j+1) == 1 

                    % dependant with next lane 

                    j = j+1; 

                elseif i+1 <= size(map,1) && map(i+1,j) == 1 

                    % dependant with next flow 

                    i = i+1; 

                elseif j+1 <= size(map,2) && i+1 <= size(map,1) 

                    % independant block found 

                    j = j+1; 

                    i = i+1; 

                    laneSplits = [laneSplits j]; 

                    flowSplits = [flowSplits turns(i)]; 

                else 

                    % the end 

                    go = false; 

                end 

            end 

            % add additional index as end of last block 

            laneSplits = [laneSplits size(lanemap,2)+1]; 

            flowSplits = [flowSplits size(lanemap,1)+1]; 

            conflicts(m).node.inlink(n).laneSplits = laneSplits; 

            conflicts(m).node.inlink(n).flowSplits = flowSplits; 

        end 

    end 

end 
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Cell Based Queuing 

Cell Based Queuing is performed in a separate function. For the 

interpolation and cell state determination separate functions are used as 

these are also used elsewhere. 
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function [MaximumInflow QueueInflow PotentialOutflow] = CBQ(network, CONSTANTS, column, 

temporary) 

  

% This function performs the Cell Based Queueing modelling framework to 

% derive maximum inflow, queue inflow and potential outflow. 

% 

% NOTE: The performance of this function heavily relies on keeping the 

% temporary structure as is. Any changes to it's fields requires a copy in 

% memory. Vectors are thus returned that should be implemented into the 

% temporary structure in any function that calls this function. 

  

% Vehicles in queue and on the link 

LinkLoad = sum(temporary.LinkInflow(:,column,:),3) - ... 

    sum(temporary.LinkOutflow(:,column,:),3); 

QueueLoad = sum(temporary.QueueInflow(:,column,:),3) - ... 

    sum(temporary.LinkOutflow(:,column,:),3); 

QueueLoad(QueueLoad<1e-12) = 0; % rounding issues -> very small negative numbers 

  

% Pre-allocate 

MaximumInflow = zeros(CONSTANTS.Links, 1); 

QueueInflow = zeros(CONSTANTS.Links, 1, CONSTANTS.Classes); 

PotentialOutflow = zeros(CONSTANTS.Links, 1, CONSTANTS.Classes); 

QueueLength = zeros(CONSTANTS.Links, 1); 

  

%% Loop the links 

for n = 1:CONSTANTS.Links 

     

    % Deduce cell states 

    if QueueLoad(n) > 0 

        [L T S shockEnable] = cellStates(network, column, temporary, CONSTANTS, n, QueueLoad(n)); 

        % make cumulative 

        L = [0 cumsum(L)]; 

        T = [0 cumsum(T)]; 

        S = [0 cumsum(S)]; 

        % interpolate queue length 

        QueueLength(n,1) = interpCBQ(QueueLoad(n), S, L); 

    else 

        % no queue 

        shockEnable = false; 

    end 

  

    % Queue inflow 

    FreeFlowLength = max(network.LinkLength(n)-QueueLength(n,1), 0); 

    Period = min(max(column+1-... 

        FreeFlowLength./(network.LinkSpeed(n)*CONSTANTS.DeltaK), 1), column); 

    % If Period equals column, the free flow section is transversed within 

    % a time step and thus QueueInflow will in reality also have vehicles 

    % not on the link yet. 

    QueueInflow(n,1,1:CONSTANTS.Classes) = temporary.LinkInflow(n,floor(Period),:) + ... 

        rem(Period,1) * (temporary.LinkInflow(n,ceil(Period),:) - ... 

        temporary.LinkInflow(n,floor(Period),:)); 

     

    % Maximum inflow 

    if shockEnable 

        MaximumInflow(n) = max(min(network.LinkCapacity(n)*CONSTANTS.DeltaK, ... 

            sum(S(1,end,:),3)-LinkLoad(n)), 0); 

    else 

        % for early time steps the storage does not cover all cells 

        MaximumInflow(n) = network.LinkCapacity(n)*CONSTANTS.DeltaK; 

    end 

     

    % Potential outflow 

    if QueueLoad(n) == 0 

        % as there is no queue, the queue inflow is equal to the outflow 

        PotentialOutflow(n,:,:) = QueueInflow(n,1,:) - ... 

            temporary.QueueInflow(n,column,:); 
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    else 

        % assume a large queue 

        AggregatedPotentialOutflow = interpCBQ(CONSTANTS.DeltaK, T, S); 

        if AggregatedPotentialOutflow < QueueLoad(n) 

            % all vehicles are indeed queued, get potential outflows from 

            % queue inflow as all classes have the same speed, find time 

            % where the total number of vehicles is equal to x 

            x = sum(temporary.LinkOutflow(n,column,:),3) + AggregatedPotentialOutflow; 

            xArray = sum(temporary.QueueInflow(n,1:column,:),3); 

            d = xArray - x; 

            k = length(d(d<0)); 

            f = (x-xArray(k))/(xArray(k+1)-xArray(k)); % fraction of linear step 

            PotentialOutflow(n,:) = temporary.QueueInflow(n,k,:) + ... 

                f.*(temporary.QueueInflow(n,k+1,:)-temporary.QueueInflow(n,k,:)) - ... 

                temporary.LinkOutflow(n,column,:); 

        else 

            % small queue, add free flow vehicles 

            QueueTravelTime = interpCBQ(QueueLoad(n), S, T); 

            Tremainder = CONSTANTS.DeltaK-QueueTravelTime; 

            Lab = Tremainder.*network.LinkSpeed(n); 

            FreeFlowLength = network.LinkLength(n)-(QueueLength(n,1)+Lab); 

            % similar to queue inflow but with a different distance and for the 

            % current time step as we need the current vehicles within the range 

            Period = max(column-FreeFlowLength./(network.LinkSpeed(n)*CONSTANTS.DeltaK), 1); 

            PotentialOutflow(n,:,:) = temporary.LinkInflow(n,floor(Period),:) + ... 

                rem(Period,1) * (temporary.LinkInflow(n,ceil(Period),:) - ... 

                temporary.LinkInflow(n,floor(Period),:)) - temporary.LinkOutflow(n,column,:); 

        end 

    end 

     

    % Apply hazard destruction 

    PotentialOutflow(n,:,:) = min(PotentialOutflow(n,:,:), ... 

        permute(temporary.MaxLinkOutflow(n,:), [1 3 2])); 

    

end 
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function [L, T, S, shockEnable] = cellStates(network, column, temporary, CONSTANTS, n, QueueLoad) 

  

% deal with early time steps 

if column-network.CellCount(n) < 1 

    nCells = column-1; 

    fLast = 1; 

    shockEnable = false; % ignore storage constraint 

else 

    nCells = network.CellCount(n); 

    fLast = network.CellLastFactor(n); 

    shockEnable = true; 

end 

  

% get flow pattern (in reversed order), sum classes 

pastFlow = sum(temporary.LinkOutflow(n,column:-1:column-nCells,:), 3); 

cellFlow = pastFlow(1,1:end-1) - pastFlow(1,2:end); % cumulative to momentary 

cellFlow = cellFlow./CONSTANTS.DeltaK; % pcu/dt -> pcu/h 

% calculate to density and speed via the fundamental diagram 

kjam = CONSTANTS.QueueDensity*network.LinkLanes(n); 

kcap = network.LinkCapacity(n)/network.LinkSpeed(n); 

cellDens = kcap+((network.LinkCapacity(n)-cellFlow)*(kjam-kcap)/network.LinkCapacity(n)); 

cellSpeed = cellFlow./cellDens; 

% apply saturation flow on the first cell 

cellSpeed(1) = max(cellFlow(1), network.LinkSaturationFlow(n))/cellDens(1); 

cellSpeed(cellSpeed<0) = 0; % rounding errors 

% calculate to travel time and storage 

L = ones(1,nCells).*network.CongCellLength(n); 

L(end) = L(end).*fLast; 

T = L./cellSpeed; 

S = L.*cellDens; 
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function out = interpCBQ(in, cumulIn, cumulOut) 

% This function interpolates as interp1q does, but it works faster as it is 

% specific to the linear method and it only works for a single 'in' value. 

% The edge values are returned for out of range values. 

d = cumulIn - in; 

k = length(d(d<0)); 

if k == 0 
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    out = cumulOut(1); 

elseif k == length(cumulOut); 

    out = cumulOut(k); 

else 

    sx = in - cumulIn(k); 

    dx = cumulIn(k+1)-cumulIn(k); 

    dy = cumulOut(k+1)-cumulOut(k); 

    out = cumulOut(k) + sx*dy/dx; 

end 

Node model 

The node model is programmed in the nodeModel functions. Sub 

functions of the Lane Choice Model are contained within the same file. 
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function [LinkInflow LinkOutflow conflicts] = nodeModel(network, CONSTANTS, ... 

    column, SplitFractions, MaximumInflow, PotentialOutflow, ... 

    Departures, evacscheme, conflicts, temporary) 

  

% This function performs the node model to derive actual inflow and  

% outflow. 

% 

% NOTE: The performance of this function heavily relies on keeping the 

% temporary structure as is. Any changes to it's fields requires a copy in 

% memory. Vectors are thus returned that should be implemented into the 

% temporary structure in any function that calls this function. 

  

% Pre-allocate 

LinkInflow = zeros(CONSTANTS.Links, 1, CONSTANTS.Classes); 

LinkOutflow = zeros(CONSTANTS.Links, 1, CONSTANTS.Classes); 

% permute: [outlink, classes, 1] -> [inlink, outlink, classes] 

SplitFractions = permute(SplitFractions, [3 1 2]);  

  

% Connector links 

for i = 1:length(network.ConnectorsO) 

    % get classes from scheme 

    if ~isempty(evacscheme) 

        classes = find(evacscheme.Origins == network.LinkTail(network.ConnectorsO(i))); 

    else 

        classes = 1; 

    end 

    departingVehicles = SplitFractions(1,network.ConnectorsO(i),classes) .* ... 

        ((Departures(network.ConnectorsO(i)) / CONSTANTS.Occupation) - ... 

        temporary.LinkInflow(network.ConnectorsO(i),column,classes)); % [1 x 1 x classes] 

    ratio = min( MaximumInflow(network.ConnectorsO(i))/sum(departingVehicles), 1); 

    LinkInflow(network.ConnectorsO(i),1,classes) = ratio * departingVehicles; 

end 

affected = intersect(network.ConnectorsO,find(temporary.AffectedLinks)); 

LinkInflow(affected,1,:) = 0; 

% destination links have infinite output capacity 

LinkOutflow(network.ConnectorsD,1,:) = ... 

    temporary.QueueInflow(network.ConnectorsD,column+1,:) - ... 

    temporary.QueueInflow(network.ConnectorsD,column,:); 

  

% Other links, loop nodes they connect to 

for n = 1:CONSTANTS.Nodes 

    if any(network.Origins == n) || any(network.Destinations == n) 

        continue 

    end 

    store = ''; 

    % Calculate turnflows 

    nIn = length(conflicts(n).node.inlinks); 

    nOut = length(conflicts(n).node.outlinks); 

    turnFlows = zeros(nIn, nOut, CONSTANTS.Classes); 

    if nOut == 1 

        % Merge 

        % no route choice 

        turnFlows(:,1,:) = PotentialOutflow(conflicts(n).node.inlinks,1,1:CONSTANTS.Classes); 

    else 

        % Intersection 

        % get turn matrix 

        turnmatrix = conflicts(n).node.turnmatrix; 
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        % loop links and define turnflows 

        fractions = zeros(1,1:nOut,1:CONSTANTS.Classes); 

        for i = 1:nIn 

            % space = [inlink(=i) x outlink x class] 

            % get split fractions for link i that are possible   

            if isempty(turnmatrix) 

                fractions(1,1:nOut,1:CONSTANTS.Classes) = ... 

                    SplitFractions(1,conflicts(n).node.outlinks,:); 

            else 

                fractions(1,1:nOut,1:CONSTANTS.Classes) = ... 

                    SplitFractions(1,conflicts(n).node.outlinks,:) .* ... 

                    turnmatrix(i,:,ones(1,CONSTANTS.Classes)); 

                % scale to sum = 1 per class 

                if sum(fractions) == 0 

                    fractions = zeros(size(fractions)); 

                else 

                    s = sum(fractions,2); 

                    fractions = fractions./s(:,ones(1,nOut),:); 

                    fractions(isnan(fractions)) = 0; % 0/0 = nan 

                end 

            end 

            inLink = conflicts(n).node.inlinks(i); 

            turnFlows(i,:,:) = PotentialOutflow(inLink,ones(1,nOut),... 

                1:CONSTANTS.Classes).*fractions; 

        end 

    end 

     

    % Apply constraints on the nodes 

    % this step will adapt the turn flow matrix , 'None' nodes are skipped 

    switch conflicts(n).type 

        case 'Controlled' 

            % get partial flows 

            partialFlows = LCM(sum(turnFlows,3), conflicts(n).node); 

            maxPartialFlows = max(partialFlows, [], 3); % [inlink x outlink] 

            % loop as long as any constraint is violated 

            nConfs = size(conflicts(n).node.conflicts, 3); 

            maxRelLoad = inf; 

            distrib = []; 

            while maxRelLoad > 1 

                % calculate conflict demand 

                demand = sum(sum( maxPartialFlows(:,:,ones(1,nConfs)) .* ... 

                    conflicts(n).node.conflicts, 1), 2); 

                % calculate reduction factor 

                [maxRelLoad inds] = max(demand./conflicts(n).node.capacities); 

                reduction = min(1, 1/maxRelLoad); 

                % find inlinks of these conflicts (usually only 1 conflict) 

                inLinks = sum(sum(conflicts(n).node.conflicts(:,:,inds), 3), 2) > 0; 

                % calculate link time allocation 

                distrib(inLinks,end+1) = sum(maxPartialFlows(inLinks,:) .* ... 

                    conflicts(n).node.conflicts(inLinks,:,inds(1)),2) / ... 

                    demand(inds(1)); 

                % change all flows from these inlinks 

                turnFlows(inLinks,:,:) = reduction*turnFlows(inLinks,:,:); 

                maxPartialFlows(inLinks,:) = reduction*maxPartialFlows(inLinks,:); 

            end 

            % apply reduction by sum of maximum link times 

            reduction = min(1, 1/sum(max(distrib,[],2))); 

            turnFlows = reduction*turnFlows; 

                 

        case 'Uncontrolled' 

            % get partial flows 

            partialFlows = LCM(sum(turnFlows,3), conflicts(n).node); 

            % get turn flows of t-1.5 

            prevTurnFlows = .5*conflicts(n).node.prevTurnFlows1 + ... 

                .5*conflicts(n).node.prevTurnFlows2; 

            % apply reduction per link 

            for i = 1:nIn 

                reduction = 1; 

                % loop lanes 

                for j = 1:length(conflicts(n).node.inlink(i).lane) 

                    % get minor and major groups 

                    minor = conflicts(n).node.inlink(i).lane(j).minor; 

                    major = conflicts(n).node.inlink(i).lane(j).major; 

                    % loop conflict groups 

                    for c = 1:size(minor,3) 
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                        % calculate flows 

                        majorFlow = sum(sum(major(:,:,c).*prevTurnFlows)) / ... 

                            CONSTANTS.DeltaK; %[pcu/h] 

                        minorFlow = sum(sum(minor(1,:,c).*partialFlows(i,:,j))) / ... 

                            CONSTANTS.DeltaK; %[pcu/h] 

                        % calculate reduction 

                        capacity = exp(-majorFlow*CONSTANTS.MinGapAcceptance) / ... 

                            CONSTANTS.AverageHeadway; %[pcu/h] 

                        reduction = min(reduction, capacity/minorFlow); 

                    end 

                end 

                % reduce flows from the link 

                turnFlows(i,:,:) = reduction*turnFlows(i,:,:); 

            end 

            % store for next time step 

            store = 'turnflows'; 

             

        case 'Roundabout' 

            % get turn flows of t-1.5 

            prevTurnFlows = .5*conflicts(n).node.prevTurnFlows1 + ... 

                .5*conflicts(n).node.prevTurnFlows2; 

            % model is type specific 

            if ~strcmp(conflicts(n).node.type, 'Turbo') 

                % -- 1-Lane / 2-Lane -- 

                % apply reduction per link 

                for i = 1:nIn 

                    % calculate flows 

                    Vexit = sum(sum(conflicts(n).node.inlink(i).Vexit.*prevTurnFlows))... 

                        / CONSTANTS.DeltaK; %[pcu/h] 

                    Vcirc = sum(sum(conflicts(n).node.inlink(i).Vcirc.*prevTurnFlows))... 

                        / CONSTANTS.DeltaK; %[pcu/h] 

                    % get parameters from link, or node if not present 

                    alpha = conflicts(n).node.inlink(i).alpha; 

                    if isempty(alpha) 

                        alpha = conflicts(n).node.alpha; 

                    end 

                    beta = conflicts(n).node.beta; % type specific 

                    gamma = conflicts(n).node.inlink(i).gamma; 

                    if isempty(gamma) 

                        gamma = conflicts(n).node.gamma; 

                    end 

                    % calculate and apply reduction 

                    capacity = (1500 - (8/9)*(alpha*Vexit + beta*Vcirc))/gamma; 

                    capacity = max(capacity, 0); % equilibrium/oscilation 

                    demand = sum(sum(turnFlows(i,:,:), 3), 2) / CONSTANTS.DeltaK; 

                    reduction = min(1, capacity/demand); 

                    turnFlows(i,:,:) = reduction*turnFlows(i,:,:); 

                end 

                % store for next time step 

                store = 'turnflows'; 

            else 

                % -- Turbo -- 

                % get partial flows 

                partialFlows = LCM(sum(turnFlows,3), conflicts(n).node); 

                % apply reduction per link 

                for i = 1:nIn 

                    reduction = 1; 

                    % determine reduction by critical lane 

                    for j = 1:length(conflicts(n).node.inlink(i).lane) 

                        % calculate flows 

                        cmax = min(size(prevTurnFlows,3), ... 

                            size(conflicts(n).node.inlink(i).lane(j).Vexit,3)); 
                        Vexit = sum(sum(sum( conflicts(n).node.inlink(i).lane(j).Vexit.* ... 

                            prevTurnFlows(:,:,1:cmax) ))) / CONSTANTS.DeltaK; %[pcu/h] 

                        Vcirc = sum(sum(sum(conflicts(n).node.inlink(i).lane(j).Vcirc.* ... 

                            prevTurnFlows(:,:,1:cmax) ))) / CONSTANTS.DeltaK; %[pcu/h] 

                        % get parameters from lane 

                        alpha = conflicts(n).node.inlink(i).lane(j).alpha; 

                        beta  = conflicts(n).node.inlink(i).lane(j).beta; 

                        gamma = conflicts(n).node.inlink(i).lane(j).gamma; 

                        % calculate reduction 

                        capacity = (1500 - (8/9)*(alpha*Vexit + beta*Vcirc))/gamma; 

                        capacity = max(capacity, 0); % may occur due to V from t-1 

                        demand = sum(partialFlows(i,:,j)) / CONSTANTS.DeltaK; %[pcu/h] 

                        reduction = min(reduction, capacity/demand); 
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                    end 

                    % apply reduction 

                    turnFlows(i,:,:) = reduction.*turnFlows(i,:,:); 

                    partialFlows(i,:,:) = reduction.*partialFlows(i,:,:); 

                end 

                % store for next time step 

                store = 'partialflows'; 

            end 

             

        case 'Weaving' 

            % gather link info 

            pre = conflicts(n).node.pre; 

            post = conflicts(n).node.post; 

            A = pre(1); 

            if pre(end) && pre(end) ~= A 

                B = pre(end); 

            elseif pre(end-1) ~= A 

                B = pre(end-1); 

            else 

                B = []; % diverge section 

            end 

            C = post(1); 

            if post(end) && post(end) ~= C 

                D = post(end); 

            elseif post(end-1) ~= C 

                D = post(end-1); 

            else 

                D = []; % merge section 

            end 

            % calculate demand 

            demand = [sum(turnFlows(A,C),3) sum(turnFlows(A,D),3); ... 

                sum(turnFlows(B,C),3) sum(turnFlows(B,D),3)]; 

            % prepare taper lane number adjustment 

            preTaperAdj = zeros(size(pre)); 

            if conflicts(n).node.pretaper 

                preTaperAdj(pre==C) = -1; 

            end 

            postTaperAdj = zeros(size(post)); 

            if conflicts(n).node.posttaper 

                postTaperAdj(post==D) = -1; 

            end 

            % create utility matrix, start with lane changes 

            nlanes = length(pre); 

            util = zeros(nlanes); 

            for i = 1:nlanes 

                for j = 1:nlanes 

                    util(i,j) = abs((i+preTaperAdj(i))-(j+postTaperAdj(j))) * ... 

                        CONSTANTS.LaneChangeUtil; 

                end 

            end 

            % include taper disutility 

            if conflicts(n).node.pretaper 

                % deduce first and last lanes of links 

                Alast = find(pre==A,1,'last'); 

                Bfirst = find(pre==B,1,'first'); 

                util(Alast:Bfirst,:) = util(Alast:Bfirst,:) + CONSTANTS.TaperUtil; 

            end 

            % exclude lanes that appear/disappear 

            util(pre==0,:) = -inf; 

            util(:,post==0) = -inf; 

            % apply logit 

            exps = exp(util); 

            flow = zeros(nlanes); 

            flow(pre==A,post==C) = demand(1,1) .* exps(pre==A,post==C) ./ ... 

                sum(sum(exps(pre==A,post==C))); 

            if ~isempty(D) 

                flow(pre==A,post==D) = demand(1,2) .* exps(pre==A,post==D) ./ ... 

                    sum(sum(exps(pre==A,post==D))); 

            end 

            if ~isempty(B) 

                flow(pre==B,post==C) = demand(2,1) .* exps(pre==B,post==C) ./ ... 

                    sum(sum(exps(pre==B,post==C))); 

            end 

            if ~isempty(B) && ~isempty(D) 

                flow(pre==B,post==D) = demand(2,2) .* exps(pre==B,post==D) ./ ... 
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                    sum(sum(exps(pre==B,post==D))); 

            end 

            % calculate lane demand 

            laneDemand = zeros(nlanes,1); 

            if ~isempty(D) && ~isempty(B) % merges have no weaving traffic 

                for i = 2:nlanes-1 % exterior lanes cannot have flow over it 

                    from_left = (1:nlanes)' + preTaperAdj < i & pre==A; 

                    to_right = (1:nlanes)' + postTaperAdj > i & post==D; 

                    from_right = (1:nlanes)' + preTaperAdj > i & pre==B; 

                    to_left = (1:nlanes)' + postTaperAdj < i & post==C; 

                    laneDemand(i,1) = CONSTANTS.WeaveFraction * ... 

                        (sum(sum(flow(from_left,to_right))) + ... 

                        sum(sum(flow(from_right,to_left)))); 

                end 

            end 

            % merge taper lanes 

            if conflicts(n).node.pretaper 

                flow(Alast,:) = flow(Alast,:) + flow(Bfirst,:); 

                laneDemand(Alast,1) = laneDemand(Alast,1) + laneDemand(Bfirst,1); 

                flow(Bfirst,:) = []; 

                laneDemand(Bfirst,:) = []; 

            end 

            % calculate reduction 

            reduction = min(min(CONSTANTS.WeaveLaneCap*CONSTANTS.DeltaK./ ... 

                (sum(flow,2)+laneDemand)), 1); 

            % reduce all flows 

            turnFlows = reduction*turnFlows; 

    end 

     

    % Apply constraints on the outlinks (MaximumInflow) 

    if ~isempty(conflicts(n).node.outlinks) 

        PotentialInflow = sum(sum(turnFlows,3),1); 

        reduction = max(min(min(MaximumInflow(conflicts(n).node.outlinks)'./... 

            PotentialInflow), 1), 0); 

        turnFlows = reduction*turnFlows; 

        % Add to link inflow 

        % permute: [1 (sum inlinks), outlink, classes] -> [outlink, 1 (time slice), classes] 

        % (transpose respecting 3rd dimension) 

        LinkInflow(conflicts(n).node.outlinks,1,:) = permute(sum(turnFlows, 1), [2 1 3]); 

        if strcmp(store, 'partialflows') 

            partialFlows = reduction*partialFlows; 

        end 

    end 

    if ~isempty(conflicts(n).node.inlinks) 

        % Add to link inflow 

        % no permute: [outlink, 1 (time slice), classes] 

        LinkOutflow(conflicts(n).node.inlinks,1,:) = sum(turnFlows, 2); 

    end 

     

    % Apply restrictions as vehicles have been destroyed by the hazard 

    LinkOutflow(temporary.AffectedLinks,1,:) = min( LinkOutflow(temporary.AffectedLinks,1,:),... 

        permute(temporary.MaxLinkOutflow(temporary.AffectedLinks,:), [1 3 2]) - ... 

        temporary.LinkOutflow(temporary.AffectedLinks,column,:) ); 

     

    % Store for next time step 

    if strcmp(store, 'turnflows') 

        conflicts(n).node.prevTurnFlows2 = conflicts(n).node.prevTurnFlows1; 

        conflicts(n).node.prevTurnFlows1 = sum(turnFlows,3); 

    elseif strcmp(store, 'partialflows') 

        conflicts(n).node.prevTurnFlows2 = conflicts(n).node.prevTurnFlows1; 

        conflicts(n).node.prevTurnFlows1 = partialFlows; 

    end 

  

end 

  

% Deduce partial flows from lanemaps and turn flows 

function partialFlows = LCM(turnFlows, node) 

% This function actually performs the 2nd splitter and the assignment. The 

% first splitter is allraedy performed. The dimensions of the partial flows 

% will be: [inlink, outlink, lane] 

turnFlows(turnFlows<0) = 0; % tiny rounding  errors around 0 

partialFlows = zeros(length(node.inlinks), length(node.outlinks), 0); 

% Loop the inlinks of the node 

for i = 1:length(node.inlink) 

    flows = []; 
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    lanemap = node.inlink(i).lanemap; 

    for s = 1:length(node.inlink(i).laneSplits)-1 

        l1 = node.inlink(i).laneSplits(s); 

        l2 = node.inlink(i).laneSplits(s+1)-1; 

        f1 = node.inlink(i).flowSplits(s); 

        f2 = node.inlink(i).flowSplits(s+1)-1; 

        % get flows from this link [outlink x lane]; 

        flows(f1:f2,l1:l2) = zeroSplitter(lanemap(f1:f2,l1:l2), ... 

            turnFlows(i,node.inlink(i).order(f1:f2))', zeros(f2-f1+1,l2-l1+1)); 

    end 

    % permute: [outlink, lane] -> [1 (inlink), outlink, lane] 

    partialFlows(i,node.inlink(i).order,1:size(flows,2)) = ... 

        permute(flows, [3 1 2]); 

end 

  

% Split if lane not used 

function flows = zeroSplitter(map, dirflows, flows) 

% one lane means no choice 

if size(map,2) == 1 

    flows = dirflows; 

    return 

end 

% assign flows regardless of the possiblitity of negative flows 

tempflows = assign(map, dirflows, flows); 

% double precision may result in -1e16 while should be zero 

[i, j] = find(tempflows==min(min(tempflows)) & tempflows<-1e-15, 1); 

if ~isempty(i) 

    % negative flows found, split at most negative 

    if j+1 <= size(map,2) && map(i,j+1) == 1 

        % (last turn flow i on lane j) < 0, next lane is next group 

        j = j+1; 

    else 

        % (last lane j of turn flow i) < 0, next flow is next group 

        i = i+1; 

    end 

    % re-assign before part 

    flows(1:i-1,1:j-1) = zeroSplitter(map(1:i-1,1:j-1), dirflows(1:i-1), flows(1:i-1,1:j-1)); 

    % re-assign after part 

    flows(i:end,j:end) = zeroSplitter(map(i:end,j:end), dirflows(i:end), flows(i:end,j:end)); 

else 

    % assigned flows are all positive 

    flows = tempflows; 

end 

  

% Assigns flows to the lanes 

function flows = assign(map, dirflows, flows) 

% average flow per lane (is actual flow per lane if dependency holds) 

avelaneflow = sum(dirflows)./size(map,2); 

i = find(map(:,1),1,'first'); % there may be impossible turn flows 

j = 1; 

% deduce first elements 

if size(map,1) > i && map(i+1,1) == 1 

    % first entry is the first flow as the first flow can only use one lane 

    flows(i,j) = dirflows(i); 

    i = i+1; 

elseif size(map,2) > 1 && map(i,j+1) == 1 

    % first entry is aveflow as the first lane has only 1 flow 

    flows(i,j) = avelaneflow; 

    j = j+1; 

end 

% add extra row and column to the map to avoid range checks 

map(end+1,end+1) = 0; 

% walk through the map 

while i < size(map,1) && j < size(map,2) 

    if map(i,j+1) == 0 && map(i+1,j) == 0 

        % we have reached the extra row or column, we can either assign the 

        % directional flow remainder or average lane flow remainder (is 

        % equal) 

        flows(i,j) = avelaneflow - sum(flows(1:i,j)); 

        i = i+1; 

        j = j+1; 

    elseif map(i,j+1) == 1 

        % next step is a new lane, this flow gets average lane flow remainder 

        flows(i,j) = avelaneflow - sum(flows(1:i,j)); 

        j = j+1; 
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    else 

        % next step is a new flow, this lane gets directional flow remainder 

        flows(i,j) = dirflows(i) - sum(flows(i,1:j)); 

        i = i+1; 

    end 

end 

Node Input Generator 

The Node Input Generator is in total 2182 lines of code. Much of this 

code is related to graphical elements and is not related to the actual 

generation of groups, which is the core of the program. The conflict 

group generation sub function (genGroups) will be shown, together 

with the used sub functions. 
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function genGroups(src, evt) 

% apply lane maps to turn matrix 

fig = gcbf; 

udat = get(fig, 'UserData'); 

type = get(findobj(fig, 'Tag', 'nodeType'), 'UserData'); 

if (strcmp(type, 'Controlled') || strcmp(type, 'Uncontrolled or priority')) && ... 

        get(findobj(fig, 'Tag', 'uselanemaps'), 'Value') == 1 

    [udat ok] = lanemaps2turnmatrix(udat); 

    if ~ok 

        return 

    end 

end 

% empty lanemap if all movements are possible 

if get(findobj(fig, 'Tag', 'allmatrix'), 'Value') == 1 

    udat.node.turnmatrix = []; 

end 

% based on the type, generate groups (and maybe some parameters) 

switch type 

    case {'None', 'Weaving section'} 

        % no groups 

    case 'Controlled' 

        % gather intersecting turnflows 

        Uturn = false; % exclude U-turns (permitted conflict) 

        crosses = getCrosses(udat, Uturn); 

        % initiate conflicts 

        conflicts = zeros(length(udat.inlink), length(udat.outlink), 0); 

        foundany = true; % while loop 

        prev_groups = crosses; % previous loop groups, start with 2-conflicts 

        % waitbar tracking 

        h = waitbar(0,''); 

        g = 2; % group size 

        hc = 0; % waitbar update counter 

        while foundany 

            % update waitbar 

            g = g+1; 

            waitbar(0,h,['Creating ' num2str(g) '-phase groups']); 

            % initialize loop 

            foundany = false; % get out of while loop unless it is changed 

            cur_groups = zeros(length(udat.inlink), length(udat.outlink), 0); 

            had = false(size(prev_groups,3),1); % had groups = subgroups 

            % Loop previous groups 

            for i = 1:size(prev_groups,3) 

                % update waitbar, works per group size from 0 to 1 

                hc = hc+1; 

                if hc == 20 

                    waitbar(i/size(prev_groups,1),h) 

                    hc = 0; 

                end 

                % Per previous group, loop previous groups further along 

                for j = i+1:size(prev_groups,3) 

                    % get the non-matching turn flows 

                    group1 = prev_groups(:,:,i); 

                    group2 = prev_groups(:,:,j); 

                    tf1 = (group1-group1.*group2); 

                    tf2 = (group2-group1.*group2); 

                    if sum(sum(tf1))~=1 || sum(sum(tf2))~=1 
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                        % per group 1 should not match, skip otherwise 

                        continue 

                    end 

                    % is this combination a conflict? 

                    this = getConflict(tf1|tf2, crosses); 

                    if any(this) 

                        foundany = true; 

                        % find sub groups 

                        these = getConflict(group1|group2, prev_groups); 

                        had(these) = true; 

                        % find duplicates 

                        these = getConflict(group1|group2, cur_groups); 

                        if ~any(these) 

                            % only add if not present allready 

                            cur_groups(:,:,end+1) = group1|group2; 

                        end 

                    end 

                end 

            end 

            % if any prev_group is not part of a current group, keep it 

            if any(~had) 

                conflicts = cat(3, conflicts, prev_groups(:,:,~had)); 

            end 

            % prepare for next loop 

            prev_groups = cur_groups; 

        end 

        % capacities, determine right turns 

        waitbar(1,h,'Determining capacities'); 

        rightTurns = zeros(length(udat.inlink), length(udat.outlink)); 

        for i = 1:length(udat.inlink) 

            minang = inf; 

            lanemap = udat.inlink(i).lanemap; 

            % find outlink closest to the right 

            for j = 1:length(udat.outlink) 

                if udat.inlink(i).angle == udat.outlink(j).angle 

                    continue 

                end 

                ang = 360-innerAngle(udat.inlink(i).angle, udat.outlink(j).angle); 

                if ang < minang; 

                    minang = ang; 

                    right = j; 

                end 

            end 

            % search for inlink from the right that is closer 

            for j = 1:length(udat.inlink) 

                if udat.inlink(i).angle == udat.inlink(j).angle 

                    continue 

                end 

                ang = 360-innerAngle(udat.inlink(i).angle, udat.inlink(j).angle); 

                if ang < minang 

                    % no right turn as inlink is closer 

                    right = []; 

                end 

            end 

            % does the right turn have dedicated lanes only? 

            if any(sum(lanemap(:,lanemap(end,:)>0),1) > 1) 

                % their is a shared lane 

                right = []; 

            end 

            % store dedicated right turns 

            if ~isempty(right) 

                rightTurns(i,right) = 1; 

            end 

        end 

        maxConf = max(sum(sum(conflicts,1),2)); 

        capacities = ones(1,1,size(conflicts,3)); 

        for c = 1:size(conflicts,3) 

            if sum(sum(conflicts(:,:,c) .* rightTurns)) > 0 && ... 

                    sum(sum(conflicts(:,:,c),1),2) < maxConf; 

                % no right turn, this conflict can only use a fraction of time 

                capacities(1,1,c) = (maxConf + sum(sum(conflicts(:,:,c),1),2)) / (2*maxConf); 

            end 

        end 

        if ishandle(h) 

            delete(h) % delete waitbar 



 
 
 

 

 

 
 132  Network Performance Degeneration in Dynamic Traffic Management  

132 

133 

134 

135 

136 

137 

138 

139 

140 

141 

142 

143 

144 

145 

146 

147 

148 

149 

150 

151 

152 

153 

154 

155 

156 

157 

158 

159 

160 

161 

162 

163 

164 

165 

166 

167 

168 

169 

170 

171 

172 

173 

174 

175 

176 

177 

178 

179 

180 

181 

182 

183 

184 

185 

186 

187 

188 

189 

190 

191 

192 

193 

194 

195 

196 

197 

198 

199 

200 

201 

202 

203 

204 

205 

206 

        end 

        % store conflicts 

        udat.node.conflicts = conflicts; 

        udat.node.capacities = capacities; 

        msgbox([num2str(size(conflicts, 3)) ' conflict groups generated.']) 

    case 'Uncontrolled or priority' 

        % gather intersecting turnflows 

        Uturn = true; % include U-turns 

        crosses = getCrosses(udat, Uturn); 

        % create waitbar 

        h = waitbar(0,''); 

        % group counter (information for user only) 

        ngroups = 0; 

        % Loop the inlinks 

        for i1 = 1:length(udat.inlink) 

            % update waitbar 

            waitbar(i1/length(udat.inlink), h, ['Creating minor/major groups for link '... 

                num2str(i1) ' of ' num2str(length(udat.inlink))]) 

            % we need a lanemap 

            if isempty(udat.inlink(i1).lanemap) 

                errordlg(['Link ' num2str(i1) ' does not have a lanemap.'], '') 

                delete(h) 

                return 

            end 

            % find major flows of all turn flows from i1 

            for j1 = 1:length(udat.outlink) 

                % initiate majors matrix of flows towards j1 

                majors(:,:,j1) = zeros(length(udat.inlink), length(udat.outlink)); 

                % loop inlinks to find major flows 

                for i2 = 1:length(udat.inlink) 

                    if i2 == i1 

                        continue % major flow not from the same link 

                    end 

                    % loop outlinks to find major flows 

                    for j2 = 1:length(udat.outlink) 

                        % i1-j1 conflicting with i2-j2? 

                        comb = zeros(length(udat.inlink),length(udat.outlink)); 

                        comb(i1, j1) = 1;  

                        comb(i2, j2) = 1; 

                        this = getConflict(comb, crosses); 

                        if ~isempty(find(this,1)) 

                            if udat.inlink(i1).priority && ~udat.inlink(i2).priority 

                                % i2-j2 is not major 

                            elseif ~udat.inlink(i1).priority && udat.inlink(i2).priority 

                                % i2-j2 is major 

                                majors(i2,j2,j1) = 1; % *) 

                            else 

                                % both priority or both not, major if from the right 

                                ai1 = udat.inlink(i1).angle; 

                                aj1 = udat.outlink(j1).angle; 

                                ai2 = udat.inlink(i2).angle; 

                                ai1_j1 = innerAngle(aj1, ai1); % angle between in1 and out1 

                                if ai1_j1 == 0 

                                    ai1_j1 = 360; 

                                end 

                                ai1_i2 = innerAngle(ai2, ai1); % angle between in1 and in2 

                                if ai1_i2 < ai1_j1 % in2 comes from the right 

                                    % i2-j2 is major 

                                    majors(i2,j2,j1) = 1; % *) 

                                end 

                            end 

                            % *) i2-j2 is a major turn flow for flow from 

                            % the current link i1 towards j1 

                        end 

                    end 

                end 

            end 

            % loop lanes at link i1 

            for i = 1:size(udat.inlink(i1).lanemap, 2) 

                % initiate minor and major for this lane 

                minor = zeros(1,length(udat.outlink),0); 

                major = zeros(length(udat.inlink),length(udat.outlink),0); 

                % get available turns from the turn lane 

                turns = find(udat.inlink(i1).lanemap(:,i)); 

                order = udat.inlink(i1).order; 
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                % find groups of size j = 1, 2, 3 etc. partial flows 

                for j = 1:length(turns) 

                    % get all combinations of size j 

                    group_minors = nchoosek(turns,j); 

                    % loop partial groups and find common majors 

                    for g = 1:size(group_minors,1) 

                        % assume all majors 

                        group_majors = ones(length(udat.inlink), length(udat.outlink)); 

                        % loop minors in group 

                        for p = 1:size(group_minors,2) 

                            % major only if major for all 

                            these_majors = majors(:,:,order(group_minors(g,p))); 

                            group_majors = group_majors & these_majors; 

                        end 

                        % keep non-empty groups 

                        if sum(sum(group_majors)) > 0 

                            these_minors = zeros(1,length(udat.outlink),1); 

                            these_minors(order(group_minors(g,:))) = 1; 

                            minor = cat(3, minor, these_minors); 

                            major = cat(3, major, group_majors); 

                            ngroups = ngroups+1; 

                        end 

                    end 

                end 

                % delete groups that are a subset of others 

                these = true(1, size(minor, 3)); 

                for j = 1:size(minor, 3) 

                    others = 1:size(minor, 3); 

                    others(j) = []; 

                    ind1 = getConflict(minor(:,:,j), minor(:,:,others)); 

                    ind2 = getConflict(major(:,:,j), major(:,:,others)); 

                    these(ind1&ind2) = false; 

                end 

                minor = minor(:,:,these); 

                major = major(:,:,these); 

                % store groups per lane 

                udat.inlink(i1).lane(i).minor = minor; 

                udat.inlink(i1).lane(i).major = major; 

            end 

        end 

        delete(h) 

        msgbox([num2str(ngroups) ' conflict groups generated.']) 

    case 'Roundabout' 

        % get roundabout type 

        rtype = get(findobj(fig, 'Tag', 'rounType'), 'UserData'); 

        switch rtype 

            case {'1-Lane', '2-Lane'} 

                % Loop inlink to generate parameters for 

                for i1 = 1:length(udat.inlink) 

                    % initiate Vexit 

                    Vexit = zeros(length(udat.inlink), length(udat.outlink)); 

                    % find nearest outlink (to the left) 

                    i1a = udat.inlink(i1).angle; 

                    minang = inf; 

                    % loop outlinks to find nearest 

                    for j = 1:length(udat.outlink) 

                        ja = udat.outlink(j).angle; 

                        ang = innerAngle(i1a, ja); 

                        if ang < minang 

                            minang = ang; 

                            exit = j; 

                        end 

                    end 

                    % loop inklinks to see if any is actually closer 

                    for j = 1:length(udat.inlink) 

                        if i1 == j 

                            continue % not the same link 

                        end 

                        ja = udat.inlink(j).angle; 

                        ang = innerAngle(i1a, ja); 

                        if ang < minang 

                            exit = []; % no exit flow is closest link is an inlink 

                        end 

                    end 

                    % all flow to the exit link is exit flow 
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                    if ~isempty(exit) 

                        Vexit(:,exit) = 1; 

                    end 

                    % initiate Vcirc 

                    Vcirc = zeros(length(udat.inlink), length(udat.outlink)); 

                    % loop inlinks to get turnflows 

                    for i2 = 1:length(udat.inlink) 

                        i2a = udat.inlink(i2).angle; 

                        % loop outlinks to get turnflows 

                        for j2 = 1:length(udat.outlink) 

                            j2a = udat.outlink(j2).angle; 

                            ang1 = 360-innerAngle(i2a, i1a); % angle to the right 

                            ang2 = 360-innerAngle(i2a, j2a); % angle to the right 

                            if ang1 < ang2 

                                % turnflow goes past inlink 

                                Vcirc(i2, j2) = 1; 

                            end 

                        end 

                    end 

                    % store per link 

                    udat.inlink(i1).Vexit = Vexit; 

                    udat.inlink(i1).Vcirc = Vcirc; 

                end 

                msgbox('Vexit and Vcirc generated for all inlinks.', '') 

            case 'Turbo' 

                % Get all nodes and links from the plot 

                ax = findobj(fig, 'Tag', 'rounTurboAxes'); 

                allLines = findobj(ax, 'Type', 'line'); 

                m = get(allLines, 'Marker'); 

                % get links (without marker) 

                linkObjs = allLines(strcmp(m, 'none')); 

                if length(linkObjs) <= 1 

                    msgbox('Please draw the roundabout first.') 

                    return 

                end 

                % get nodes by the tag 

                originObjs = findobj(ax, '-regexp', 'Tag', 'origin'); 

                destinationObjs = findobj(ax, '-regexp', 'Tag', 'destination'); 

                roundaboutObjs = findobj(ax, '-regexp', 'Tag', 'roundabout'); 

                % store links with the XY coordinates 

                objs.links = [cell2mat(get(linkObjs, 'XData')),... 

                    cell2mat(get(linkObjs, 'YData'))]; 

                % set right order (against the clock) 

                for l = 1:size(objs.links,1) 

                    x1 = objs.links(l,1); 

                    x2 = objs.links(l,2); 

                    y1 = objs.links(l,3); 

                    y2 = objs.links(l,4); 

                    ang1 = getAng(x1, y1); 

                    ang2 = getAng(x2, y2); 

                    ang = 360-innerAngle(ang1, ang2); % angle to the right 

                    if ang > 180 

                        % no link can span more than 180 degrees, must be 

                        % the other way around 

                        objs.links(l, :) = [x2 y2 x1 y1]; 

                    else 

                        objs.links(l, :) = [x1 y1 x2 y2]; 

                    end 

                    set(linkObjs(l), 'Color', [1 0 0]) 

                    p = plot(objs.links(l, 1), objs.links(l, 2), 'Marker', '.'); 

                    delete(p) 

                    set(linkObjs(l), 'Color', [0 0 0]) 

                end 

                % store nodes with the XY coordinates 

                objs.origins = [cell2mat(get(originObjs, 'XData')),... 

                    cell2mat(get(originObjs, 'YData'))]; 

                objs.destinations = [cell2mat(get(destinationObjs, 'XData')),... 

                    cell2mat(get(destinationObjs, 'YData'))]; 

                objs.roundabouts = [cell2mat(get(roundaboutObjs, 'XData')),... 

                    cell2mat(get(roundaboutObjs, 'YData'))]; 

                % Loop inlinks 

                h = waitbar(0, ''); 

                for i = 1:length(udat.inlink) 

                    % update waitbar 

                    waitbar(i/length(udat.inlink), h, ['Generating lanemap, ',... 
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                        'Beta''s, Vexit''s & Vcirc''s for link ' num2str(i)]) 

                    % Loop lanes of link i 

                    nlanes = length(findobj(originObjs, 'Tag', ['origin' num2str(i)])); 

                    % initiate lanemap 

                    lanemap = zeros(length(udat.outlink), nlanes); 

                    for l = 1:nlanes 

                        % find origin node 

                        for n = 1:length(originObjs) 

                            % link and lane number in the userdata 

                            dat = get(originObjs(n), 'UserData'); 

                            if dat.inlink == i && dat.lane == l 

                                % node found, n stays at current value 

                                break 

                            end 

                        end 

                        % == lanemap == 

                        % move downstream 

                        [origins, destinations, roundabouts] = ... 

                            getNodes('down', objs, objs.origins(n,:), []); 

                        if isempty(roundabouts) 

                            % origin not connected properly 

                            errordlg('An origin node is not connected to the roundabout') 

                            delete(h) 

                            return 

                        end 

                        % get stop nodes at this crossection 

                        % find onject 

                        obj = findobj(roundaboutObjs, 'XData', roundabouts(1,1),... 

                            'YData', roundabouts(1,2)); 

                        % find objects with the same tag 

                        groupobjs = findobj(roundaboutObjs, 'Tag', get(obj, 'Tag')); 

                        % get XY coordinates 

                        if length(groupobjs) == 1 

                            stopnodes = [get(groupobjs, 'XData') get(groupobjs, 'YData')]; 

                        else 

                            stopnodes = [cell2mat(get(groupobjs, 'XData')),... 

                                cell2mat(get(groupobjs, 'YData'))]; 

                        end 

                        % Travel downstream in a loop 

                        % lanemap is from left to right, links will be found 

                        % in opposite order, start counter at the right 

                        n_out = length(udat.outlink)+1;  

                        ok = true; % keep on looping 

                        while ok 

                            % Find exit link that may not be accessible to 

                            % update exit link counter 

                            % find object of first roundabout node 

                            obj = findobj(roundaboutObjs, 'XData', roundabouts(1,1),... 

                                'YData', roundabouts(1,2)); 

                            % find all objects in this set 

                            groupobjs = findobj(roundaboutObjs, 'Tag', get(obj, 'Tag')); 

                            % get XY coordinates 

                            if length(groupobjs) == 1 

                                r_nodes = [get(groupobjs, 'XData') get(groupobjs, 'YData')]; 

                            else 

                                r_nodes = [cell2mat(get(groupobjs, 'XData')),... 

                                    cell2mat(get(groupobjs, 'YData'))]; 

                            end 

                            % move downstream from this set 

                            [origins2, destinations2, roundabouts2] = ... 

                                getNodes('down', objs, r_nodes, []); 

                            if ~isempty(destinations2) 

                                n_out = n_out-1; % exit link is found, adapt lane counter 

                            end 

                            % Find actual downstream nodes 

                            [origins, destinations, roundabouts] = ... 

                                getNodes('down', objs, roundabouts, stopnodes); 

                            if ~isempty(destinations) 

                                % exit accessible from lane l 

                                lanemap(n_out,l) = 1; 

                            end 

                            % stop loop as dead ends (stop nodes) are found 

                            if isempty(roundabouts) 

                                ok = false; 

                            end 



 
 
 

 

 

 
 136  Network Performance Degeneration in Dynamic Traffic Management  

432 

433 

434 

435 

436 

437 

438 

439 

440 

441 

442 

443 

444 

445 

446 

447 

448 

449 

450 

451 

452 

453 

454 

455 

456 

457 

458 

459 

460 

461 

462 

463 

464 

465 

466 

467 

468 

469 

470 

471 

472 

473 

474 

475 

476 

477 

478 

479 

480 

481 

482 

483 

484 

485 

486 

487 

488 

489 

490 

491 

492 

493 

494 

495 

496 

497 

498 

499 

500 

501 

502 

503 

504 

505 

506 

                        end 

                        % create order array 

                        order = 1:length(udat.outlink); 

                        order = [order(i:end) order(1:i-1)]; % shift 

                        % == Vcirc == 

                        % get downstream nodes 

                        [origins, destinations, roundabouts] = ... 

                            getNodes('down', objs, objs.origins(n,:), []); 

                        % find objects in this set 

                        obj = findobj(roundaboutObjs, 'XData', roundabouts(1,1),... 

                            'YData', roundabouts(1,2)); 

                        groupobjs = findobj(roundaboutObjs, 'Tag', get(obj, 'Tag')); 

                        % get XY coordinates as stopnodes 

                        if length(groupobjs) == 1 

                            stopnodes = [get(groupobjs, 'XData') get(groupobjs, 'YData')]; 

                        else 

                            stopnodes = [cell2mat(get(groupobjs, 'XData')),... 

                                cell2mat(get(groupobjs, 'YData'))]; 

                        end 

                        % find all right-hand nodes as these also cross 

                        r_all = sqrt(stopnodes(:,1).^2+stopnodes(:,2).^2); 

                        r_linked = min(sqrt(roundabouts(:,1).^2+roundabouts(:,2).^2)); 

                        roundabouts = stopnodes(r_linked<=r_all,:); 

                        % store these nodes as they are also needed for Vexit 

                        rgroup = roundabouts; 

                        % travel upstream 1 roundabout set 

                        [origins, destinations, roundabouts] = ... 

                            getNodes('up', objs, roundabouts, []); 

                        % the number of roundabout lanes here determines beta 

                        beta = size(roundabouts,1); 

                        % initiate Vcirc 

                        Vcirc = zeros(length(udat.inlink),length(udat.outlink),0); 

                        % keep track of available outlinks 

                        out_links = true(1,length(udat.outlink)); 

                        % travel further upstream 

                        ok = true; 

                        while ok 

                            % move upstream 

                            [origins, destinations, roundabouts] = ... 

                                getNodes('up', objs, roundabouts, stopnodes); 

                            % add these origin nodes to partial flows 

                            if ~isempty(origins) 

                                for o = 1:size(origins,1) 

                                    % find object and its data 

                                    obj = findobj(originObjs, 'XData', origins(o,1),... 

                                        'YData', origins(o,2)); 

                                    dat = get(obj, 'UserData'); 

                                    % out_links may include impossible 

                                    % turns from dat.inlink, these flows 

                                    % are zero anyway 

                                    Vcirc(dat.inlink, out_links, dat.lane) = 1; 

                                end 

                            end 

                            if ~isempty(roundabouts) 

                                % move downstream and find destinations, 

                                % these may not be destinations of any 

                                % partial flow to be found later as flow  

                                % does not pass the current link 

                                [origins2, destinations2, roundabouts2] = ... 

                                    getNodes('down', objs, roundabouts, []); 

                                if ~isempty(destinations2) 

                                    % find object and its data 

                                    obj = findobj(destinationObjs, 'XData', ... 

                                        destinations2(1,1), 'YData', destinations2(1,2)); 

                                    dat = get(obj, 'UserData'); 

                                    out_links(dat.outlink) = false; 

                                end 

                            else 

                                % stop if no roundabout nodes anymore 

                                ok = false; 

                            end 

                        end 

                        % store per lane 

                        udat.inlink(i).lane(l).Vcirc = Vcirc; 

                        % == Vexit == 
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                        % data from Vcirc can be used 

                        roundabouts = rgroup; 

                        % move upstream 

                        [origins, destinations, roundabouts] = ... 

                            getNodes('up', objs, roundabouts, []); 

                        % find set as stopnodes 

                        if ~isempty(roundabouts) 

                            obj = findobj(roundaboutObjs, 'XData', roundabouts(1,1),... 

                                'YData', roundabouts(1,2)); 

                            groupobjs = findobj(roundaboutObjs, 'Tag', get(obj, 'Tag')); 

                            if length(groupobjs) == 1 

                                stopnodes = [get(groupobjs, 'XData'),... 

                                    get(groupobjs, 'YData')]; 

                            else 

                                stopnodes = [cell2mat(get(groupobjs, 'XData')),... 

                                    cell2mat(get(groupobjs, 'YData'))]; 

                            end 

                        else 

                            % roundabout apparently not a full circle, thus 

                            % no need for stopnodes 

                            stopnodes = []; 

                        end 

                        % move upstream 

                        [origins, destinations, roundabouts] = ... 

                            getNodes('up', objs, roundabouts, []); 

                        % move downstream once to find exit nodes 

                        [origins, destinations, roundabouts] = ... 

                            getNodes('down', objs, roundabouts, []); 

                        % get exit link number through the node object 

                        out_link = false(1,length(udat.outlink)); 

                        if ~isempty(destinations) 

                            obj = findobj(destinationObjs, 'XData', destinations(1,1),... 

                                'YData', destinations(1,2)); 

                            dat = get(obj, 'UserData'); 

                            out_link(dat.outlink) = true; 

                        end 

                        % travel upstream 1 roundabout set 

                        [origins, destinations, roundabouts] = ... 

                            getNodes('up', objs, destinations, []); 

                        % initiate Vexit 

                        Vexit = zeros(length(udat.inlink),length(udat.outlink),0); 

                        % travel further upstream 

                        ok = true; 

                        while ok 

                            % move upstream 

                            [origins, destinations, roundabouts] = ... 

                                getNodes('up', objs, roundabouts, stopnodes); 

                            % add these origin nodes to partial matrix 

                            if ~isempty(origins) 

                                for o = 1:size(origins,1) 

                                    % find object and its data 

                                    obj = findobj(originObjs, 'XData', origins(o,1),... 

                                        'YData', origins(o,2)); 

                                    dat = get(obj, 'UserData'); 

                                    % add in partial matrix 

                                    Vexit(dat.inlink, out_link, dat.lane) = 1; 

                                end 

                            end 

                            % stop if no roundabout nodes left 

                            if isempty(roundabouts) 

                                ok = false; 

                            end 

                        end 

                        % store Vexit and beta per link 

                        udat.inlink(i).lane(l).Vexit = Vexit; 

                        udat.inlink(i).lane(l).beta = beta; 

                    end 

                    % store lanemap and inlink order per link 

                    if any(sum(lanemap,1) == 0) 

                        errordlg(['Some lanes are a dead end at link ' num2str(i) '.']); 

                        delete(h) 

                        return 

                    end 

                    udat.inlink(i).lanemap = lanemap; 

                    udat.inlink(i).order = order; 
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                end 

                % delete waitbar 

                delete(h) 

                % translate generated lanemaps to turn matrix 

                [udat ok] = lanemaps2turnmatrix(udat); 

                if ~ok 

                    return 

                end 

                if any(sum(udat.node.turnmatrix, 1) == 0) 

                    errordlg('Some inlinks are a dead end') 

                    return 

                end 

                if any(sum(udat.node.turnmatrix, 2) == 0) 

                    errordlg('Some outlinks are unreachable') 

                    return 

                end 

        end 

end 

set(fig, 'UserData', udat) 

  

% Translate lanemaps to turnmatrix 

function [udat ok] = lanemaps2turnmatrix(udat) 

ok = true; % status for lane map existance 

% initiate turnmatrix 

udat.node.turnmatrix = zeros(length(udat.inlink), length(udat.outlink)); 

% loop the links 

for i = 1:length(udat.inlink) 

    if isempty(udat.inlink(i).lanemap) 

        errordlg(['Link ' num2str(i) ' does not have a lanemap.'], '') 

        ok = false; 

        return 

    end 

    % get turns in lanemap and select indices from the corresponding link order 

    these = sum(udat.inlink(i).lanemap,2) > 0; 

    udat.node.turnmatrix(i,udat.inlink(i).order(these)) = 1; 

end 

if sum(sum(udat.node.turnmatrix)) == length(udat.inlink)*length(udat.outlink) 

    % all movements defined in the lane maps 

    udat.node.turnmatrix = []; 

end 

  

% Find conflicting turnflows 

function crosses = getCrosses(udat, Uturn) 

d = 1; % deviation between in- and outlinks in degrees 

maxUturnAngle = 2; % degrees, excluding d, otherwise just another link 

% initiate crosses 

crosses = zeros(length(udat.inlink), length(udat.outlink), 0); 

% loop inlinks 

for i1 = 1:length(udat.inlink) 

    ai1 = udat.inlink(i1).angle - d; 

    x11 = sind(ai1); 

    y11 = cosd(ai1); 

    % loop outlinks 

    for j1 = 1:length(udat.outlink) 

        aj1 = udat.outlink(j1).angle + d; 

        if innerAngle(ai1, aj1) <= maxUturnAngle + 2*d && ~Uturn 

            continue % exclude U-turn 

        end 

        if ~isempty(udat.node.turnmatrix) && udat.node.turnmatrix(i1,j1) == 0 

            continue % impossible movement 

        end 

        x12 = sind(aj1); 

        y12 = cosd(aj1); 

        % straight line coefficients 

        b1 = (y12-y11)/(x12-x11); 

        a1 = y11 - b1*x11; 

        % loop inlinks again 

        for i2 = 1:length(udat.inlink) 

            ai2 = udat.inlink(i2).angle - d; 

            if ai1 == ai2 

                continue % not from same link 

            end 

            x21 = sind(ai2); 

            y21 = cosd(ai2); 

            % loop outlinks again 
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            for j2 = 1:length(udat.outlink) 

                aj2 = udat.outlink(j2).angle + d; 

                if innerAngle(ai2, aj2) <= maxUturnAngle + 2*d  && ~Uturn 

                    continue % exclude U-turn 

                end 

                if ~isempty(udat.node.turnmatrix) && udat.node.turnmatrix(i2,j2) == 0 

                    continue % impossible movement 

                end 

                x22 = sind(aj2); 

                y22 = cosd(aj2); 

                % straight line coefficients 

                b2 = (y22-y21)/(x22-x21); 

                a2 = y21 - b2*x21; 

                % find intersecting point 

                if isinf(b1) && isinf(b2) 

                    % parallel 

                    continue 

                elseif isinf(b1) 

                    x = x11; 

                    y = a2 + b2*x; 

                elseif isinf(b2) 

                    x = x21; 

                    y = a1 + b1*x; 

                else 

                    x = (a1-a2)/(b2-b1); 

                    y = a1+b1*x; 

                end 

                p = 1000000000; % precision factor, their may be very tiny rouding issues  

                if round(sqrt(x^2+y^2)*p)/p <= 1 

                    % find duplicates 

                    this_conflict = zeros(length(udat.inlink), length(udat.outlink)); 

                    this_conflict(i1, j1) = 1; 

                    this_conflict(i2, j2) = 1; 

                    ind = getConflict(this_conflict, crosses); 

                    if ~any(find(ind,1)) 

                        % add if unique 

                        crosses(i1, j1, end+1) = 1; 

                        crosses(i2, j2, end) = 1; 

                    end 

                end 

            end 

        end 

    end 

end 

  

% Return conclicts, if any 

function ind = getConflict(cur, conflicts) 

% return indices c where conflicts(:,:,c) is subset of cur(:,:) 

% get x and y indices 

a = find(cur); 

x = rem(a,size(conflicts,1)); 

x(x==0) = size(conflicts,1); 

y = (a-x)/size(conflicts,1) + 1; 

% loop conflicts and set cur elements to zero 

for c = 1:length(a) 

    conflicts(x(c), y(c), :) = 0; 

end 

% subsets have no elements left (sum = 0) 

ind = sum(sum(conflicts, 1), 2) == 0; 

  

% Move upstream or downstream along turbo roundabout map 

function [origins, destinations, roundabouts] = getNodes(direction, objs, nodes, stopnodes) 

origins = []; 

destinations = []; 

roundabouts = []; 

% get indices: links go from 1,2 to 3,4; movements may go the other way 

switch direction 

    case 'up' 

        from = [3 4]; 

        to = [1 2]; 

    case 'down' 

        from = [1 2]; 

        to = [3 4]; 

end 

% remove links to stopnodes 



 
 
 

 

 

 
 140  Network Performance Degeneration in Dynamic Traffic Management  

732 

733 

734 

735 

736 

737 

738 

739 

740 

741 

742 

743 

744 

745 

746 

747 

748 

749 

750 

751 

752 

753 

754 

755 

756 

757 

758 

759 

760 

for n = 1:size(stopnodes, 1) 

    objs.links(objs.links(:,to(1))==stopnodes(n,1) &... 

        objs.links(:,to(2))==stopnodes(n,2), :) = []; 

end 

% keep links from a current node 

these = false(size(objs.links, 1),1); 

for n = 1:size(nodes, 1) 

    these = these | (objs.links(:,from(1))==nodes(n,1) &... 

        objs.links(:,from(2))==nodes(n,2)); 

end  

objs.links = objs.links(these,:); 

% find other nodes per node 

for n = 1:size(nodes, 1) 

    for l = 1:size(objs.links, 1) 

        these = objs.origins(:,1)==objs.links(l,to(1)) & ... 

            objs.origins(:,2)==objs.links(l,to(2)); 

        origins = [origins; objs.origins(these,:)]; 

        these = objs.destinations(:,1)==objs.links(l,to(1)) & ... 

            objs.destinations(:,2)==objs.links(l,to(2)); 

        destinations = [destinations; objs.destinations(these,:)]; 

        these = objs.roundabouts(:,1)==objs.links(l,to(1)) & ... 

            objs.roundabouts(:,2)==objs.links(l,to(2)); 

        roundabouts = [roundabouts; objs.roundabouts(these,:)]; 

    end 

end 

% keep unique only 

origins = unique(origins, 'rows'); 

destinations = unique(destinations, 'rows'); 

roundabouts = unique(roundabouts, 'rows'); 

 


